Carboniferous tectono-magmatic evolution of the northern Luliang arc: evidence from geochemistry and petrography of Carboniferous volcanic rocks in the northern Luliang Uplift, NW China

Abstract

The Northern Junggar Basin experienced extensive subduction and a complex tectono-magmatic evolution during the Late Paleozoic, resulting in a heterogeneous distribution of volcanic rocks in the Junggar Basin. In this study, the Carboniferous tectono-magmatic evolution of the northern Luliang arc was described by exploring the petrography and geochemistry of Carboniferous volcanic rocks collected from well Y-2 and outcrop WW′ in the northern Luliang Uplift. The distribution, types, and formation ages of these volcanic rocks were characterized and the volcanic sequence in well Y-1 was divided into upper and lower parts according to vertical variations in selected geochemical data. Then the petrogenesis and tectonic settings of different volcanic rocks were evaluated and this was used to infer the tectono-magmatic evolution of the northern Luliang arc during the Carboniferous. The results indicate that: (1) Carboniferous high-K calc-alkali andesite–dacite associations are distributed in the west of the northern Luliang Uplift, and Lower Carboniferous calc-alkali basalt–dacite–rhyolite assemblages are preserved in its east. (2) The intermediate-acid volcanic rocks in wells Y-1 and Y-2 were derived from calc-alkali basaltic magma through melting of the juvenile lower crust, and geochemical variations indicate increasing addition of slab melting in a subduction-related arc environment. The bimodal volcanic rocks from outcrop WW′ were derived from lithospheric underplating of basaltic magma in an intra-arc extensional setting. (3) The closure of the eastern Keramaili Oceanic basin occurred before the Early Carboniferous, and the tectono-magmatic difference between the east and the west of the northern Luliang Uplift appeared before the Carboniferous period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

source of basalts in the outcrop WW’. The Late Carboniferous basalts in the eastern Luliang Uplift are derived from Li et al. (2015a)

Fig. 11

source of intermediate-acid volcanic rocks in the northern Luliang Uplift

Fig. 12
Fig. 13
Fig. 14

References

  1. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geoth Res 102(1–2):67–95

    Article  Google Scholar 

  2. Bolge LL, Carr MJ, Feigenson MD, Alvarado GE (2006) Geochemical stratigraphy and magmatic evolution at Arenal Volcano, Costa Rica. J Volcanol Geoth Res 157(1):34–48

    Article  Google Scholar 

  3. Brewer TS, Åhäll KI, Menuge JF, Storey CD, Parrish RR (2004) Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism. Precambr Res 134(3–4):249–273

    Article  Google Scholar 

  4. Chen J, Han B, Ji J, Zhang L, Xu Z, He G, Wang T (2010) Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang. China Lithos 115(1–4):137–152

    Article  Google Scholar 

  5. Cheng T, Nebel O, Sossi P, Chen F (2015) Assessment of hafnium and iron isotope compositions of Chinese national igneous rock standard materials GSR-1 (granite), GSR-2 (andesite), and GSR-3 (basalt). Int J Mass Spectrom 386(1):61–66

    Article  Google Scholar 

  6. Condie KC (1989) Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: identification and significance. Lithos 23(1):1–18

    Article  Google Scholar 

  7. Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79(3–4):491–504

    Article  Google Scholar 

  8. Defant MJ (1992) The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J Geol Soc 149(4):569–579

    Article  Google Scholar 

  9. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662

    Article  Google Scholar 

  10. Eby, and Nelson, G. (1992) Chemical subdivision of the a-type granitoids: petrogenetic and tectonic implications. Geology 20(7):641

    Article  Google Scholar 

  11. Ewart A (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesite-basaltic compositional range. In: Thorpe RS (ed) Andesites. John Wiley and sons, New York, pp 25–95

    Google Scholar 

  12. Fitton JG, James D, Kempton PD, Ormerod DS, Leeman WP (1988) The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United Sates. J Petrol 29(1):331–349

    Article  Google Scholar 

  13. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Article  Google Scholar 

  14. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31(6):565–568

    Article  Google Scholar 

  15. Genç ŞC, Tüysüz O (2010) Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides, Northern Turkey: a geochemical and isotopic approach. Lithos 118(1–2):95–111

    Article  Google Scholar 

  16. Geng H, Min S, Chao Y, Xiao W, Xian W, Zhao G, Zhang L, Wong K, Wu F (2009) Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266(3–4):364–389

    Article  Google Scholar 

  17. Geng H, Sun M, Yuan C, Zhao G, Xiao W (2011) Geochemical and geochronological study of Early Carboniferous volcanic rocks from the west Junggar: petrogenesis and tectonic implications. J Asian Earth Sci 42(5):854–866

    Article  Google Scholar 

  18. Gladney ES, Jones EA, Nickell EJ, Roelandts I (1992) 1988 compilation of elemental concentration data for USGS AGV-1, GSP-1, and G-2. Geostand Geoanal Res 16(2):111–300

    Article  Google Scholar 

  19. Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist 38(5):1065–1073

    Article  Google Scholar 

  20. Gou J, Sun D, Liu Y, Ren Y, Zhao Z, Liu X (2013) Geochronology, petrogenesis, and tectonic setting of Mesozoic volcanic rocks, southern Manzhouli area. Inner Mongolia Int Geol Rev 55(8):1029–1048

    Article  Google Scholar 

  21. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145(5):515–533

    Article  Google Scholar 

  22. Han B, Ji J, Song B, Chen L, Zhang L (2006) Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (part I): timing of postcollisional plutonism. Acta Petrologica Sinica 22(5):1077–1086

    Google Scholar 

  23. Han S, Sang S, Wang W, Li Z, Liu W, Zhang K (2015) Geochemical characteristics and tectonic setting of Lower Carboniferous volcanic rocks from Wunan-Ludong area, Junggar basin. China Himal Geol 36(2):118–125

    Google Scholar 

  24. Han S, Sang S, Liang J, Wang W, Zhang G, Wang S (2019a) Geochemistry, petrology, and U-Pb dating of high-K volcanic rocks in wells WC-1 and Y-2 from the northern Junggar Basin, northwestern China: implications for the closure of the Keramaili oceanic basin during the Carboniferous. Geol J 54:3921–3939

    Article  Google Scholar 

  25. Han S, Sang S, Liang J, Wang W, Zhang G, Wang S (2019b) Characteristics and genesis of diachronous Carboniferous volcano-sedimentary sequences: insights from geochemistry, petrology and U-Pb dating in the north Junggar basin. China Int Geol Rev 61(4):404–423

    Article  Google Scholar 

  26. He G, Liu J, Zhang Y, Xu X (2007) Keramay ophiolitic mélange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica 23(7):829–831

    Google Scholar 

  27. He Y, Zhao G, Sun M, Wilde SA (2008) Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: an alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos 102(1):158–178

    Article  Google Scholar 

  28. Hui Y, Weng B, Zhang Y, Zhang G, Liu Z, Wu F, Wei Y, Dai X, Hu Q (2009) Distribution of hydrocarbon traps in volcanic rocks and optimization for selecting exploration prospects and targets in Junggar Basin: case study in Ludong-Wucaiwan area. NW China. Petrol Explor Dev 36(4):419–427

    Article  Google Scholar 

  29. Jakeš P, White AJR (1972) Hornblendes from calc-alkaline volcanic rocks of island arcs and continental margins. American Mineralogist J Earth Planet Mater 57(5–6):887–902

    Google Scholar 

  30. Kou Y, Shi Y, Li B, Qin X, Wang L, Li X (2010) The complex lithology rock-electricity features of volcanic rocks in Kelameili gas field. Acta Petrologica Sinica 26(1):291–301

    Google Scholar 

  31. La Flèche M, Camiré G, Jenner G (1998) Geochemistry of post-acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Québec. Canada Chem Geol 148(3–4):115–136

    Article  Google Scholar 

  32. Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, pp 1–193

    Google Scholar 

  33. Li D, He D, Tang Y, Fan C, Kong Y (2012) Genesis of Early Carboniferous volcanic rocks of the Di’nan uplift in Junggar Basin: constraints to the closure time of Kalamaili Ocean. Acta Petrologica Sinica 28(8):2340–2354

    Google Scholar 

  34. Li P, Yuan C, Sun M, Long X, Cai K (2014) Thermochronological constraints on the Late Paleozoic tectonic evolution of the southern Chinese Altai. J Asian Earth Sci 113:51–60

    Article  Google Scholar 

  35. Li D, He D, Santosh M, Ma D (2015a) Tectonic framework of the northern Junggar basin part II: the island arc basin system of the western Luliang uplift and its link with the west Junggar terrane. Gondwana Res 27(3):1110–1130

    Article  Google Scholar 

  36. Li D, He D, Santosh M, Ma D, Tang J (2015b) Tectonic framework of the northern Junggar basin part I: the eastern Luliang uplift and its link with the east Junggar terrane. Gondwana Res 27(3):1089–1109

    Article  Google Scholar 

  37. Li D, He D, Tang Y (2016) Reconstructing multiple arc-basin systems in the Altai–Junggar area (NW China): implications for the architecture and evolution of the western Central Asian Orogenic Belt. J Asian Earth Sci 121:84–107

    Article  Google Scholar 

  38. Liang P, Chen H, Han J, Wu C, Zhang WF, Zhao L, Wang Y (2017) The Early Carboniferous tectonic transition in the northern margin of East Junggar: constrains from geochronology and geochemistry of alkali granites. Geotectonica Et Metallogenia 41(1):202–221

    Google Scholar 

  39. Liu G, Zhu Z, She J, Deng H, Zhao T, Wang Q, Sun Y (2016) Geochronology, geochemistry and petrogenesis of the Zhulumute A-type granites in west Junggar. Xinjiang Geol Rev 62(2):331–342

    Google Scholar 

  40. Long X, Sun M, Yuan C, Xiao WJ, Chen H, Zhao Y, Cai K, Li J (2006) Genesis of Carboniferous volcanic rocks in the eastern Junggar: constraints on the closure of the Junggar Ocean. Acta Petrologica Sinica 22(1):31–40

    Google Scholar 

  41. Ludden J, Gélinas L, Trudel P (1982) Archean metavolcanics from the Rouyn-Noranda district, Abitibi Greenst. Can J Earth Sci 19(12):2276–2287

    Article  Google Scholar 

  42. Luo T, Liao Q, Zhang X, Chen J, Wang G, Huang X (2016) Geochronology and geochemistry of carboniferous metabasalts in eastern Tianshan, Central Asia: evidence of a back-arc basin. Int Geol Rev 58(6):756–772

    Article  Google Scholar 

  43. Luo T, Liao Q, Chen J, Hu C, Wang F, Chen S, Wu W, Tian J, Fan G (2017) A record of post-collisional transition: evidence from geochronology and geochemistry of Palaeozoic volcanic rocks in the eastern Junggar. Central Asia Int Geol Rev 59(10):1256–1275

    Article  Google Scholar 

  44. Mao X (2012) Research on tectonic lithofacies paleogeography and source rocks characteristics of the Carboniferous-Early Permian in the northern part of Junggar Basin (MS thesis). Northwest University, Xi’an, pp 11–13

    Google Scholar 

  45. Mao Z, Zou C, Zhu R, Guo H, Wang J, Yong T (2010) Geochemical characteristics and tectonic settings of Carboniferous volcanic rocks in Junggar basin. Acta Petrologica Sinica 26(1):207–216

    Google Scholar 

  46. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1–2):1–24

    Article  Google Scholar 

  47. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56(3–4):207–218

    Article  Google Scholar 

  48. Pearce JA (1982) Trace elements characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  49. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental Basalts and Mantle Xenoliths 147:2162–2173

    Google Scholar 

  50. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1–4):14–48

    Article  Google Scholar 

  51. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19(2):290–300

    Article  Google Scholar 

  52. Pearce JA, Mei H (1990) Lasa to Geermu volcanic rocks. In: Team C-B-T, Expedition PGCS (eds) Qinghai-Tibet Plateau Geological Evolution. Science Press, Beijing, pp 174–205

    Google Scholar 

  53. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69(1):33–47

    Article  Google Scholar 

  54. Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    Article  Google Scholar 

  55. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944

    Article  Google Scholar 

  56. Şengör AC, Natal’in BA, Sunal G, Rob VDV (2018) The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between ∼750 and ∼130 Ma ago. Annu Rev Earth Planet Sci 46(1):439–494

    Article  Google Scholar 

  57. Shellnutt JG, Bhat GM, Wang KL, Brookfield ME, Dostal J, Jahn BM (2012) Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir. India Chem Geol 334(2):154–170

    Article  Google Scholar 

  58. Shen P, Pan H, Xiao W, Li X, Dai H, Zhu H (2013) Early Carboniferous intra-oceanic arc and back-arc basin system in the west Junggar. NW China Int Geol Rev 55(16):1991–2007

    Article  Google Scholar 

  59. Su Y, Zheng J, Griffin WL, Tang H, O’Reilly SY, Lin X (2010) Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin. Chin Sci Bull 55(36):4150–4161

    Article  Google Scholar 

  60. Su B, Qin K, Sakyi P, Li X, Yang Y, Sun H, Tang D, Liu P, Xiao Q, Malaviarachchi SPK (2011) U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Res 20(2–3):516–531

    Article  Google Scholar 

  61. Su Y, Zheng J, Griffin WL, Zhao J, Tang H, Ma Q, Lin X (2012) Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: implication for a tectonic transition. Gondwana Res 22(3–4):1009–1029

    Article  Google Scholar 

  62. Sun SS, McDonough WF (1989) Chemical and Isotopic Systematics of oceanic basalts: implications for Mantle Composition and Processes. Geol Soc London Spec Publ 42(1):313–345

    Article  Google Scholar 

  63. Tan J, Wu R, Zhang Y, Wang S, Guo Z (2009) Characteristics and geochronology of volcanic rocks of Batamayineishan formation in Kalamaily, eastern Junggar. Xinjiang Acta Petrologica Sinica 25(3):539–546

    Google Scholar 

  64. Tang G, Wang Q, Wyman DA, Li Z, Zhao Z, Jia X, Jiang Z (2010) Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem Geol 277(3–4):281–300

    Article  Google Scholar 

  65. Tao H, Wang Q, Yang X, Jiang L (2013) Provenance and tectonic setting of late carboniferous clastic rocks in West Junggar, Xinjiang, China: a case from the Hala-alat Mountains. J Asian Earth Sci 64:210–222

    Article  Google Scholar 

  66. Tian W, Campbell IH, Allen CM, Guan P, Pan W, Chen M, Yu H, Zhu W (2010) The Tarim picrite–basalt–rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contrib Miner Petrol 160(3):407–425

    Article  Google Scholar 

  67. Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8(5):404

    Article  Google Scholar 

  68. Wang F, Yang M, Zheng J (2002) Geochemical characteristics and geological environment of basement volcanic rocks in Luliang, central region in Junggar basin. Acta Petrologica Sinica 18(1):9–16

    Google Scholar 

  69. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95(4):407–419

    Article  Google Scholar 

  70. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20(4):325–343

    Article  Google Scholar 

  71. Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc 164(1):31–47

    Article  Google Scholar 

  72. Wu X, Liu D, Wei G, Li J, Li Z (2009) Geochemical characteristics and tectonic settings of carboniferous volcanic rocks from Ludong-Wucaiwan area. Junggar basin Acta Petrologica Sinica 25(1):55–66

    Google Scholar 

  73. Wu X, Li J, Yang D, Zhang C, Hou L, Zheng M (2011) The electric characteristics and seismic response of Carboniferous volcanic rock in Ludong-Wucaiwan area of Junngar basin. Chinese J Geophys 54(2):481–490

    Google Scholar 

  74. Xia L (2014) The geochemical criteria to distinguish continental basalts from arc related ones. Earth Sci Rev 139:195–212

    Article  Google Scholar 

  75. Xiao W, Windley BF, Yuan C, Sun M, Han C, Lin S, Chen H, Yan Q, Liu D, Qin K, Li J, Sun S (2009) Paleozoic multiple subduction-accretion processes of the southern Altaids. Am J Sci 309(3):221–270

    Article  Google Scholar 

  76. Xiao Y, Zhang H, Shi J, Su B, Sakyi PA, Lu X, Hu Y, Zhang Z (2011) Late Paleozoic magmatic record of East Junggar, NW China and its significance: implication from zircon U-Pb dating and Hf isotope. Gondwana Res 20(2–3):532–542

    Article  Google Scholar 

  77. Xu Z, Han B, Ren R, Zhou Y, Zhang L, Chen J, Su L, L X, D L (2012) Ultramafic–mafic mélange, island arc and post-collisional intrusions in the mayile mountain, west Junggar, China: implications for Paleozoic intra-oceanic subduction–accretion process. Lithos 132–133:141–161

    Article  Google Scholar 

  78. Xu X, Jiang N, Li X, Wu C, Qu X, Zhou G, Dong L (2015) Spatial–temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar. J Asian Earth Sci 111:470–491

    Article  Google Scholar 

  79. Yang F, Chen G (2016) The basement property and evolution of the northern Junggar basin-evidence from zircon U-Pb chronology and trace element. Arab J Geosci 9(5):353

    Article  Google Scholar 

  80. Yang H, Chen L, Kong Y (2004) A novel classification of structural units in Junggar Basin. Xinjiang Petroleum Geol 25(6):686–688

    Google Scholar 

  81. Yang H, Wen B, Zhang Y, Zhang G, Liu Z, Wu F, Wei Y, Dai X, Hu Q (2009) Distribution of hydrocarbon traps in volcanic rocks and optimization for selecting exploration prospects and targets in Junggar Basin: Case study in Ludong-Wucaiwan area. NW China Pet Explor Dev 36(4):419–427

    Article  Google Scholar 

  82. Yang G, Li Y, Li Z, Liu X, Yang B, Wu H (2010) Genesis and tectonic settings of post-collision volcanic rocks in north eastern margin of East Junggar. Xinjiang Earth Sci Front 17(1):49–60

    Google Scholar 

  83. Yang X, He D, Wang Q, Tang Y, Tao H, Li D (2012) Provenance and tectonic setting of the carboniferous sedimentary rocks of the East Junggar basin, China: evidence from geochemistry and U-Pb zircon geochronology. Gondwana Res 22(2):567–584

    Article  Google Scholar 

  84. Yang F, Chen G, Hou B, Zhang J, Hu Y, Huang D (2014a) Zircon U-Pb, trace elements and Hf isotopes of pyroclastic rocks from the drilling cores in the Junggar basin. Acta Geol Sin 88(6):1068–1080

    Google Scholar 

  85. Yang G, Li Y, Safonova I, Yi S, Tong L, Seltmann R (2014b) Early Carboniferous volcanic rocks of west Junggar in the western central asian orogenic belt: implications for a supra-subduction system. Int Geol Rev 56(7):823–844

    Article  Google Scholar 

  86. Yang G, Li Y, Yan J, Tong L, Han X, Wang Y (2014c) Geochronological and geochemical constraints on the origin of the 304 ± 5 ma Karamay A-type granites from west Junggar, northwest China: implications for understanding the Central Asian Orogenic Belt. Int Geol Rev 56(4):393–407

    Article  Google Scholar 

  87. Yang G, Li Y, Tong L, Li G, Wu L, Wang Z (2016) Petrogenesis and tectonic implications of early Carboniferous alkaline volcanic rocks in Karamay region of West Junggar. Northwest China Int Geol Rev 58(10):1278–1293

    Article  Google Scholar 

  88. Yin J, Yuan C, Wang Y, Long X, Guan Y (2011) Magmatic records on the Late Paleozoic tectonic evolution of western Junggar Xinjiang. Geotectonica et Metallogenia 35(2):278–291

    Google Scholar 

  89. Zhang S, Shi X, Kong Y, Shi J, Lei T, Fang L, Sun G (2008a) Geochemical characteristics and tectonic setting of the Permian-Carboniferous volcanic rocks in Luxi area of Junggar basin. J Mineralogy Petrol 28(2):71–75

    Google Scholar 

  90. Zhang Z, Mao J, Cai J, Kusky TM, Zhou G, Yan S, Zhao L (2008b) Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos 105(3):379–395

    Article  Google Scholar 

  91. Zhang J, Xiao W, Han C, Mao Q, Ao S, Guo Q, Ma C (2011) A devonian to Carboniferous intra-oceanic subduction system in western Junggar. NW China Lithos 125(1–2):592–606

    Article  Google Scholar 

  92. Zhang S, Zhu J, Ge W, Liu S, Lu X, Zhang S, Shi J (2015a) Significant of volcanic eruption spatiotemporal sequence in Batamayineishan formation, Ludong region, Junggar basin. J Central South Univ 46(1):199–207

    Google Scholar 

  93. Zhang Y, Guo Z, Pe-Piper G, Piper DJ (2015b) Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process. Gondwana Res 28(4):1466–1481

    Article  Google Scholar 

  94. Zhang X, Zhao G, Eizenhöfer PR, Sun M, Han Y, Hou W, Liu D, Wang B, Liu Q, Xu B, Zhu CY (2016) Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the eastern Tianshan, NW China: insights from geochronology and geochemistry of mafic–intermediate intrusions. Lithos 256–257:269–281

    Article  Google Scholar 

  95. Zhang D, Zhou T, Yuan F, White N, Hollings P, Xiao W, Deng Y, Zhao B, Wang JL (2017) Genesis of Late Carboniferous granitoid intrusions in the Dayinsu area, west Junggar, Northwest China: evidence of an arc setting for the western CAOB. Int Geol Rev 59(9):1–15

    Article  Google Scholar 

  96. Zhang G, Lin H, Zhang K, Xu W (2018) Petrologic characteristics of carboniferous volcanic rocks in Luxi, Junggar Basin, and their geological significance. Geol Rev 64(1):77–90

    Google Scholar 

  97. Zhao Z, Wang Q, Xiong X (2004) Complex mantle-crust interaction in subduction zone. Bulletin Mineralogy, Petrol Geochem 23(4):277–284

    Google Scholar 

  98. Zheng R, Zhao L, Yang Y (2019) Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China. Gondwana Res 74:237–250

    Article  Google Scholar 

  99. Zhou T, Yuan F, Fan Y, Zhang D, Cooke D, Zhao G (2008) Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance. Lithos 106(3):191–206

    Article  Google Scholar 

  100. Zhou Y, Zhu W, Chen Z, Zheng B, Shao X, Xue F (2018) Volcanic rocks distribution and basement structure in western–central Junggar Basin revealed by gravitational and magnetic data. Geol J 53(3):960–976

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhuangfu Li and Mr. Peiming Zhou for their assistance in lithological analyses. We would also like to extend my gratitude to the two anonymous reviewers for their valuable comments. This research was financially supported by the National Natural Science Foundation of China (Nos. 41802182 and 42072192), Open fund of Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, China University of Mining and Technology (No. 2018-004), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD) and China Scholarship Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sijie Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, S., Sang, S., Wang, W. et al. Carboniferous tectono-magmatic evolution of the northern Luliang arc: evidence from geochemistry and petrography of Carboniferous volcanic rocks in the northern Luliang Uplift, NW China. Acta Geochim (2021). https://doi.org/10.1007/s11631-021-00461-7

Download citation

Keywords

  • Tectonic setting
  • Bimodal volcanic rocks
  • Carboniferous
  • Keramaili oceanic basin
  • Subduction
  • Northern Luliang arc