Paleoclimate evolution and aridification mechanism of the eastern Tethys during the Callovian–Oxfordian: evidence from geochemical records of the Qiangtang Basin, Tibetan Plateau

Abstract

Global climate during the Jurassic has been commonly described as a uniform greenhouse climate for a long time. However, the climate scenario of a cool episode during the Callovian–Oxfordian transition following by a warming trend during the Oxfordian (163.53 to 157.4 Ma) is documented in many localities of the western Tethys. It is still unclear if a correlatable climate scenario also occurred in the eastern Tethys during the same time interval. In this study, a detailed geochemical analysis on the 1060 m thick successions (the Xiali and Suowa formations) from the Yanshiping section of the Qiangtang Basin, located in the eastern Tethys margin during the Callovian–Oxfordian periods, was performed. To reveal the climate evolution of the basin, carbonate content and soluble salt concentrations (SO42−, Cl) were chosen as climatic indices. The results show that the overall climate patterns during the deposition of the Xiali and Suowa formations can be divided into three stages: relatively humid (~ 164.0 to 160.9 Ma), dry (~ 160.9 to 159.6 Ma), semi-dry (~ 159.6 to 156.8 Ma). A similar warming climate scenario also occurred in eastern Tethys during the Callovian–Oxfordian transition (~ 160.9 to 159.6 Ma). Besides, we clarify that the Jurassic True polar wander (TPW), the motion of the lithosphere and mantle with respect to Earth’s spin axis, inducing climatic shifts were responsible for the aridification of the Qiangtang Basin during the Callovian–Oxfordian transition with a review of the paleolatitude of the Xiali formation (19.7 + 2.8/−2.6° N) and the Suowa formation (20.7 + 4.1/−3.7° N). It is because the TPW rotations shifted the East Asia blocks (the North and South China, Qiangtang, and Qaidam blocks) from the humid zone to the tropical/subtropical arid zone and triggered the remarkable aridification during the Middle-Late Jurassic (ca. 165–155 Ma).

This is a preview of subscription content, access via your institution.

Fig. 1

adapted from Brunetti et al. (2015). Most regions of the Western and Eastern Tethys are enclosed in the red and black squares, respectively. Abbreviations, Nam, North America; SAm, South America; Ant, Antarctica; Aus, Australia; G, Greenland; I, Iberia; A, Adria; T, Taurus; AT, Alpine Tethys; BN, Bangong-Nujiang; ES, Elise Sea. QT, Qiangtang Terrane; LT, Lhasa Terrane

Fig. 2

adapted from Song et al. 2016). b Paleogeographic reconstructions of the Tethys region for Late Permian (Changhsingian, at ~ 253 Ma) showing the relative position of the Cimmerian Continent in the Gondwana (compiled from Metcalfe 2013). c Simplified geologic map showing the tectonic and stratigraphic frames of the QB and the location of the studied area (compiled from Fang et al. 2016). Abbreviations, HJSZ, Hoh Xil-Jinsha Suture Zone; BNSZ, Bangong-Nujiang Suture Zone; IYSZ, Indus-Yalung Zangpo Suture Zone; CUB, Central Uplift Belt; NQB, North Qiangtang Basin; SQB, South Qiangtang Basin

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbink O, Targarona J, Brinkhuis H, Visscher H (2001) Late Jurassic to Earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Global Planet Change 30(3–4):231–256

    Article  Google Scholar 

  2. Bai SH (1989) New recognition of marine Jurassic strata in southwestern Qinghai. Geol Rev 35(6):529–536 (in Chinese with English abstract)

    Google Scholar 

  3. Barskov IS, Kiyashko SI (2000) Thermal regime variations in the Jurassic marine basin of the East European Platform at the Callovian/Oxfordian boundary: Evidence from stable isotopes in belemnite rostra. Dokl Earth Sci 372:643–645

    Google Scholar 

  4. Bartolini A, Pittet B, Mattioli E, Hunziker JC (2003) Shallow-platform palaeoenvironmental conditions recorded in deep-shelf sediments: C and O stable isotopes in Upper Jurassic sections of southern Germany (Oxfordian-Kimmeridgian). Sediment Geol 160:107–130

    Article  Google Scholar 

  5. BGMRXAR (Bureau of Geology Mineral Resources of Xizang Autonomous Region) (1993) Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing, China, pp 1–450 (in Chinese with English abstract).

  6. Birch GF (1981) The Karbonat-Bombe: a precise, rapid and cheap instrument for determining calcium carbonate in sediments and rocks. Trans GeolSoc South Africa 84:199–203

    Google Scholar 

  7. Boucot AJ, Chen X, Scotese CR, Fan JX (2009) Phanerozoic Paleoclimate: an Atlas of Lithologic Indicators of Climate. Science Press, Beijing, pp 90–102

    Google Scholar 

  8. Brigaud B, Pucéat E, Pellenard P, Vincent B, Joachimski MM (2008) Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian-Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth Planet Sci Lett 273:58–67

    Article  Google Scholar 

  9. Chen L, Yi HS, Hu RZ (2005) Jurassic bivalves from the Qiangtang Basin in northern Tibet and the palaeoenvironmental significance. J ChengDuUnivTechnol 32(5):466–473 (in Chinese with English abstract)

    Google Scholar 

  10. Dettman DL, Fang X, Garzione CN, Li J (2003) Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett 214:267–277

    Article  Google Scholar 

  11. Dromart G, Garcia J-P, Gaumet F, Picard S, Rousseau M, Atrops F, Lecuyer C, Sheppard SMF (2003a) Perturbation of the carbon cycle at the middle/Late Jurassic transition: geological and geochemical evidence. Am J Sci 303:667–707

    Article  Google Scholar 

  12. Dromart G, Garcia JP, Picard S, Atrops F, Lécuyer C, Sheppard SMF (2003b) Ice age at the Middle-Late Jurassic transition? Earth Planet. Sci Lett 213:205–220

    Google Scholar 

  13. Fang DQ, Li C (2005) Correlation of the Triassic in the Qiangtang Basin, Tibetan Plateau. J Daqing Pet Inst 29:1–5 ((in Chinese with English abstract))

    Google Scholar 

  14. Fang XM, Xi XX, Li JJ, Mu DF (1997) The arid events of the late Miocene in the west of China. Chin Sci Bull 42:2521–2524 (in Chinese with English abstract)

    Article  Google Scholar 

  15. Fang XM, Song CH, Yan MD, Zan JB, Zhang WL, Zeng YY (2016) Mesozoic litho-and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporates. Gondwana Res 37:110–129

    Article  Google Scholar 

  16. Fortwengler D, Marchand D, Bonnot A (1997) Les coupes de Thuoux et de Savournon (SE de la France) et la limite Callovien-Oxfordien. Geobios 30:519–540

    Article  Google Scholar 

  17. Gold T (1955) Instability of the Earth’s axis of rotation. Nature 175:526–529

    Article  Google Scholar 

  18. Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The Geologic Time Scale 2012, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  19. Gruszczynski M (1998) Chemistry of Jurassic seas and it’s bearing on the existing organic life. Acta Geol Pol 48:1–29

    Google Scholar 

  20. GSC (Geological Survey of China), and CIGMR (Chengdu Institute of Geology and Mineral Resources) (2004) Geological Map of Tibet (China) (1:1,500,000) with an Explanation. Chengdu: Chengdu Cartographic Press, 133 (in Chinese).

  21. Guynn J, Kapp P, Gehrels G, Ding L (2012) U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J Asian Earth Sci 43:23–50

    Article  Google Scholar 

  22. Hallam A (1993) Jurassic climates as inferred from the sedimentary and fossil record. Philos Trans - R Soc Lond 341:287–293

    Article  Google Scholar 

  23. Hayami I (1975) A systemic survey of the Mesozoic Bivalves from Japan. Univ Museum Univ Tokyo Bull 10:1–249

    Google Scholar 

  24. He YZ, Bei PR (2011) Sedimentary Environment and Significance of Oil Shale and Gypsum in Suowa Formation in Late Jurassic in Shengli River Area of Shuanghu. North Tibet Guizhou Geology 28(11):58–64

    Google Scholar 

  25. Jenkyns HC, Jones CE, Grocke DR, Hesselbo SP, Parkinson DN (2002) Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. J Geol Soc 159:351–378

    Article  Google Scholar 

  26. Johnson ALA (1984) The Palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana 11:1–235

    Google Scholar 

  27. Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH, Ding L (2003) Tectonic evolution of the early Mesozoic blueschist bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22:1043

    Google Scholar 

  28. Lécuyer C, Picard S, Garcia JP, Sheppard SMF, Grandjean P, Dromart G (2003) Thermal evolution of Tethys surface waters during the Middle-Late Jurassic: Evidence from δ18O values of marine fish teeth. Paleoceanography 18(3):1076

    Article  Google Scholar 

  29. Li Y, Wang CS, Yin HS (2002) Filled sequence and evolution of the Mesozoic Qiangtang composite foreland basin in the Qinghai-Tibet Plateau. J Stratigr 26(1):62–79 (in Chinese with English abstract)

    Google Scholar 

  30. Li C, Zhai QG, Dong YS, Huang XP (2006) Discovery of eclogite and its geological significance in the Qiangtang area, central Tibet. Chin Sci Bull 51:1095–1100

    Article  Google Scholar 

  31. Li C, Zhai GY, Wang LQ, Yin FG, Mao XC (2009) An important window for understanding the Qinghai-Tibet Plateau: a review on research progress in recent years of Qiangtang area. Tibet Geol Bull China 28:1169–1177 (in Chinese with English abstract)

    Google Scholar 

  32. Malchus N, Steuber T (2002) Stable isotope records (O, C) of Jurassic aragonitic shells from England and NW Poland: palaeoecologic and environmental implications. Géobios 35:29–39

    Article  Google Scholar 

  33. Mattei M, Muttoni G, Cifelli F (2014) A record of the Jurassic massive plate shift from the Garedu Formation of central Iran. Geology 42:555–558

    Article  Google Scholar 

  34. Maura B, Verard C, Baumgartner PO (2015) Modeling the Middle Jurassic ocean circulation. J Palaeogeogr 4:371–383

    Article  Google Scholar 

  35. Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20:551–566

    Article  Google Scholar 

  36. Metcalfe I (2009) Comment on ‘“An alternative plate tectonic model for the Palaeozoic-Early Mesozoic PalaeoTethys evolution of Southeast Asia (Northern Thailand-Burma)”’ by O.M. Ferrari, C. Hochard and G.M. Stampfli, Tectonophys 451:346–365

    Google Scholar 

  37. Metcalfe I (2011) Palaeozoic-Mesozoic history of SE Asia. In: Hall R, Cottam M, Wilson M (eds) The SE Asian Gateway: History and Tectonics of Australia-Asia Collision, vol 355. Geological Society of London Special Publications, pp 7–35.

  38. Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  39. Muttoni G, Kent DV (2019) Jurassic monster polar shift confirmed by sequential paleopoles from Adria, the promontory of Africa. J Geophys Res Solid Earth 124:3288–3306

    Article  Google Scholar 

  40. Niu XS, Liu XF, Chen WX (2014) Hydrochemical Characteristic and evaporate-generating indicators of Youyiquan area in North Qiangtang Basin. Tibet Miner Depos 33(5):1003–1010 ((in Chinese with English abstract))

    Google Scholar 

  41. Pan GT, Ding J, Yao DS, Wang LQ (2004) Guidebook of 1:1,500,000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Cartographic Publishing House, Chengdu, pp 1–148

    Google Scholar 

  42. Pan JQ, Song CH, Bao J, Ma LF, Yan MD, Fang XM, Ying H, Yang YB (2015) Geochemical Characteristics and Salt Forming Analysis of Jurassic Strata in the Qiangtang Basin. Acta Geol Sin 89(11):2152–2160

    Google Scholar 

  43. Price G, Sellwood BW (1997) Warm palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): ecological, environmental or diagenetic controls? Palaeogeogr Palaeoclimatol Palaeoecol 129:315–327

    Article  Google Scholar 

  44. Pullen A, Kapp P, Gehrels GE, Ding L, Zhang QH (2011) Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure. Geol Soc Am Bull 123:585–600

    Article  Google Scholar 

  45. Rais P, Louis-Schmid B, Bernasconi SM, Weissert H (2007) Palaeoceanographic and palaeoclimatic reorganization around the Middle-Late Jurassic transition. Palaeogeogr Palaeoclimatol Palaeoecol 251:527–546

    Article  Google Scholar 

  46. Riboulleau A, Baudin F, Daux V, Hantzpergue P, Renard M, Zakharov V (1998) Evolution de la paléotempérature des eaux de la plate-forme russe au cours du Jurassique supérieur. C R Acad Sci 326:239–246

    Article  Google Scholar 

  47. Sellwood B, Valdes P (1997) Geological evaluation of climate General Circulation Models and model implications for Mesozoic cloud cover. Terra Nova 9:75–78

    Article  Google Scholar 

  48. Sellwood B, Valdes P, Price G (2000) Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 156:147–160

    Article  Google Scholar 

  49. Sengör AMC (1979) Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279:590–593

    Article  Google Scholar 

  50. Sengör AMC (1987) Tectonics of the Tethysides: Orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15:213–244

    Article  Google Scholar 

  51. Song CH, Zeng YY, Yan MD, Wu S, Fang XM, Bao J, Zan JB, Liu XF (2016) Magnetostratigraphy of the Middle-Upper Jurassic sedimentary sequences at Yanshiping, Qiangtang Basin, China. Geophys J Int 206:1847–1863

    Article  Google Scholar 

  52. Song CH, Zeng YY, Yan MD, Fang XM, Feng Y, Pan JQ, Liu XF, Meng QQ, Hu CH, Zhong SR (2017) Sedimentary Conditions of Evaporites in the Late Jurassic Xiali Formation, Qiangtang Basin: Evidence from Geochemistry Records. ActaGeologicaSinica (English Edition) 91(1):156–174

    Google Scholar 

  53. Tan FW, Zhu LX, Fu XG (2010) REE geochemistry of the Upper Jurassic-Lower Cretaceous carbonate rocks and palaeoclimates in the Nadigangri region, Qiangtang Basin. Sediment GeolTethyanGeol 30(4):342–351405 (in Chinese with English abstract)

    Google Scholar 

  54. Torsvik, T.H., Van der Voo, R., Preeden, U., MacNiocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeir, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., and Cocks, R.M., 2012, Phanerozoic polar wander, paleogeography, and dynamics: Earth-Science Reviews, 114, 325–368.

  55. Warren JK (2010) Evaporates through time: Tectonic, climatic and eustatic control marine and nonmarine deposits. Earth-Sci Rev 98(3–4):217–268

    Article  Google Scholar 

  56. Wierzbowski H (2004) Carbon and oxygen isotope composition of Oxfordian-Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas. Palaeogeogr Palaeoclimatol Palaeoecol 203:153–168

    Article  Google Scholar 

  57. Williams-Stroud SC, Paul J (1997) Initiation and growth of gypsum piercement structures in the Zechste Basin. J Struct Geol 19:897–907

    Article  Google Scholar 

  58. Wu T, Xiong XG, Yi CX, Bai PR, He YZ, Liu ZC (2010) Gypsolyte sedimentary environment of Upper Jurassic Lower Cretaceous in Shenglihe area in northern Qiangtang Basin. Xingjiang Petroleum Geology 31(4):376–378 (in Chinese with English abstract)

    Google Scholar 

  59. Yan MD, Zhang DW, Fang XM, Ren HD, Zhang WL, Zan JB, Song CH, Zhang T (2016) Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Res 39:292–316

    Article  Google Scholar 

  60. Yi Z, Liu Y, Meert JG (2019) A true polar wander trigger for the Great Jurassic East Asian Aridification. Geology 47(12):1112–1116

    Article  Google Scholar 

  61. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan Tibetan Orogen. Annu Rev Earth planet Sci 28:211–280

    Article  Google Scholar 

  62. Zeng SQ, Wang J, Chen M, Fu XG, Wu T (2012) The discovery of Late Bathonian-Early Callovian ammonites in the middle of northern Qiangtang Basin Tibetan Plateau. Geol Bull China 3(4):521–527 (in Chinese with English abstract)

    Google Scholar 

  63. Zeng YY, Bao J, Ma LF, Pan JQ, Song CH, Yang JW (2014) The Paleoclimatic’s evolution and the implication of halite-forming of Qiangtang Basin during the Middle-Late Jurassic of Xiali Age. Mineral Deposits 33(5):993–1002 (in Chinese with English abstract)

    Google Scholar 

  64. Zhao G, Wang Y, Huang B, Dong Y, Li S, Zhang G, Yu S (2018) Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Sci Rev 186:262–286

    Article  Google Scholar 

  65. Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23(4):1429–1454

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (Grant No. 2011CB403003), the College Innovation Research Program of Gansu Province (Grant No. 2020B-320), the College Innovation Foundation of Gansu Province (Grant No. S202013933013). We are grateful to two anonymous reviewers for constructive and thoughtful comments, and to the editor Binbin Wang for kind editorial handling, which significantly improved the manuscript. Xiaohui Fang, Gang Niu, Sa Zhang, Song Wu, Jing Bao, and Jiwei Yang are thanked for laboratory assistance and fieldwork assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongyao Zeng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Gao, L. & Zhao, W. Paleoclimate evolution and aridification mechanism of the eastern Tethys during the Callovian–Oxfordian: evidence from geochemical records of the Qiangtang Basin, Tibetan Plateau. Acta Geochim 40, 199–211 (2021). https://doi.org/10.1007/s11631-021-00458-2

Download citation

Keywords

  • Qiangtang basin
  • The Callovian–Oxfordian
  • Geochemistry
  • Paleolatitude
  • Paleoclimate