Olivine and Cr-spinel as indicators of the petrogenesis and partial melting conditions of the high-MgO ultramafic volcanic rocks from NW Ad Dhala Province—Yemen

Abstract

The high-MgO ultramafic volcanic rocks in the NW Ad Dhala province are classified as meimechite according to the IUGS classification scheme. This province represents the southeastern outcrops of the Yemen Volcanic Group (YVG), which constitutes part of the Afro-Arabian continental large igneous province (LIP) and located within the boundary of the Afar mantle plume. In this study, we present the chemical compositions of olivine and Cr-spinel in meimechite rocks from Bagah Village in NW Ad Dhala province, aiming to characterize the genesis and partial melting conditions and to estimate the crystallization temperatures of these high-MgO rocks. Olivine crystals are characterized by high forsterite, ranges from Mg-rich core (up to Fo89.69) to relatively Fe-rich rim (down to Fo78.57), high CaO, MgO and MnO whereas Cr-spinel crystals have high TiO2 and Cr# values ranging from 0.49 to 0.63 which indicate that they are crystallized from primary magma and are typical of volcanic olivine and Cr-spinel that formed in intraplate tectonic setting. Olivine and Cr-spinel compositional data and primary melt composition (MgO ~ 23 wt.%) are compatible with the derivation of studied meimechite rocks from peridotite mantle source by small degrees of partial melting under conditions of high temperature and pressure at great depths, mostly within the garnet stability field. Also, these data provide a compelling indicator for the important role of upwelling Afar mantle plume in the genesis of these high-MgO ultramafic volcanic rocks. Finally, based on the different olivine-liquid equilibrium methods and Al-in-olivine thermometer approach the estimated crystallization temperature ranges from 1450 to 1490 °C, and mantle potential temperature (Tp) ranges from 1617 to 1677 °C, at high pressure (3–4.8 GPa). These high temperatures substantiate the existence of the Afar thermal mantle plume and its important role in the genesis of the studied meimechite rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albaréde F (1992) How deep do common basaltic magmas form and differentiate? J Geophys Res 97:10997–11009

    Article  Google Scholar 

  2. Al-kadasi, M.A (1994) Temporal and spatial evolution of the basal flow of the Yemen volcanic group. University of London. 284.

  3. Almond DC (1986) Geological evolution of the Afro-Arabian Dome. Tectonophysics 131:301–332

    Article  Google Scholar 

  4. Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–218

    Article  Google Scholar 

  5. Arai S (1994) Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geoth Res 59:279–293

    Article  Google Scholar 

  6. Arndt N, Lehnert K, Yasil’ev Y. (1995) Meimechites: Highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 34:41–59

    Article  Google Scholar 

  7. Arndt N, Chauvel C, Czamaske G, Fedorenko V (1998) Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib Miner Petrol 133:297–313

    Article  Google Scholar 

  8. Arndt NT (2000) Hot heads and cold tails. Nature 407:458–461

    Article  Google Scholar 

  9. Baker JA, Snee L, Manzies MA (1996a) A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth Planet Sci Lett 138:39–55

    Article  Google Scholar 

  10. Baker JA, Thirlwall MF, Menzies MA (1996b) b): Sr-Nd-Pb isotope and trace element evidence for the crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in the western Yemen. Geochim Cosmochim Acta 60(14):2559–2581

    Article  Google Scholar 

  11. Balta JB, Asimow PD, Mosenfelder JL (2011) Manganese partitioning during hydrous melting of peridotite. Geochim Cosmochim Acta 75:5819–5833. https://doi.org/10.1016/j.gca.2011.05.026

    Article  Google Scholar 

  12. Barnes SJ, amd Roeder P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  13. Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the northern Ethiopian Plateau. J Petrol 50:1377–1403

    Article  Google Scholar 

  14. Beydoun, Z.R., As-Sururi, M.A., El-Nakhal, H., Al-Ganad, I., Baraba, R.S., Nani, A.O. and Al-Aawah, M.H (1998) International lexicon of stratigraphy, volume2nd edition, Republic of Yemen, IUGS publication. 34; 243p.

  15. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden Basins. J Afr Earth Sc 43:334–378

    Article  Google Scholar 

  16. Bosworth W, Stockli DF (2016) Early magmatism in the greater Red Sea rift: timing and significance. Can J Earth Sci 53:1158–1176

    Article  Google Scholar 

  17. Bussweiler Y, Brey GP, Pearson DG, Stachel T, Stern RA, Hardman MF, Kjarsgaard BA, Jackson SE (2017) The aluminum-in-olivine thermometer for mantle peridotites-Experimental versus empirical calibration and potential applications. Lithos 272–273:301–314

    Article  Google Scholar 

  18. Carlson WR, Czamanske G, Fedorenko V, Ilupin I (2006) A comparison of Siberian meimechites and kimberlites: Implications for the source of high-Mg alkalic magmas and flood basalts. Geochem Geophys Geosyst 7:11. https://doi.org/10.1029/2006GC001342

    Article  Google Scholar 

  19. Chazot G, Bertrand H (1995) Genesis of silicic magmas during Tertiary continental rifting in Yemen. Lithos 36:69–83

    Article  Google Scholar 

  20. Chiesa S, Civetta L, De Fino M, La Volpe L, Orsi G (1989) The Yemen trap series: Genesis and evolution of a continental flood basalt province. J Volcanol Geoth Res 36(4):337–350

    Article  Google Scholar 

  21. Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328

    Article  Google Scholar 

  22. Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10. https://doi.org/10.1016/j.chemgeo.2014.01.004

    Article  Google Scholar 

  23. Coulié E, Quidelleur X, Gllot P-Y, Courtillot V, Lefévre J-C, Chiesa S (2003) Comparative K-Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps. Earth Planet Sci Lett 202:577–592

    Google Scholar 

  24. Davison I, Al-Kadasi M, Al-Kirbash S, Al-Subbary A-K, Baker J, Blakey S, Bosence D, Dart C, Heaton R, McClay K, Manzies M, Nichols G, Owen l. and Yelland A. (1994) Geological evolution of the southeastern Red Sea Rift margin, Republic of Yemen. Geol Soc Am Bull 106:1474–1493

    Article  Google Scholar 

  25. Desta MT, Ayalew D, Ishiwatari A, Arai S, Tamura A (2014) Ferropicrite from the lalibela area in the Ethiopian large igneous province. J Mineral Petrol Sci 109:191–207

    Article  Google Scholar 

  26. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology 86:54–76

    Article  Google Scholar 

  27. Elkins-Tanton LT, Draper DS, Agee CB, Jewell J, Thorpe A, Hess PC (2007) The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contrib Miner Petrol 153:191–209

    Article  Google Scholar 

  28. Farnetani CG, Richards MA (1994) Numerical investigations of the mantle plume initiation model for flood basalt events. J Geophys Res 99:13813–13833. https://doi.org/10.1029/94JB00649

    Article  Google Scholar 

  29. Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth-Sci Rev 45:1–44

    Article  Google Scholar 

  30. Gibson SA, Thompson RN, Dickin AP (2000) Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet Sci Lett 174(3–4):355–374

    Article  Google Scholar 

  31. Heinonen JS, Luttinen AV (2010) Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province. Mineral Petrol 99:201–217. https://doi.org/10.1007/s00710-010-0115-9

    Article  Google Scholar 

  32. Heinonen JS, Luttinen AV, Riley TR, Michallik RM (2013) Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos 177:366–380. https://doi.org/10.1016/j.lithos.2013.05.015

    Article  Google Scholar 

  33. Heinonen JS, Jennings ES, Riley TR (2015) Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chem Geol 411:26–35. https://doi.org/10.1016/j.chemgeo.2015.06.015

    Article  Google Scholar 

  34. Heinonen JS, Fusswinkel T (2017) High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources. Chem Geol 467:134–142. https://doi.org/10.1016/j.chemgeo.2017.08.002

    Article  Google Scholar 

  35. Heinonen JS, Luttinen AV, Whitehouse MJ (2018) Enrichment of 18O in the mantle sources of the Antarctic portion of the Karoo large igneous province. Contrib Miner Petrol 173:21. https://doi.org/10.1007/s00410-018-1447-4

    Article  Google Scholar 

  36. Herzberg C, Ohtani E (1988) Origin of komatiite at high pressures. Earth Planet Sci Lett 88:321–329

    Article  Google Scholar 

  37. Herzberg C (1992) Depth and degree of melting of komatiite. J Geophys Res 97:4521–4540

    Article  Google Scholar 

  38. Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883

    Article  Google Scholar 

  39. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8:2. https://doi.org/10.1029/2006GC001390

    Article  Google Scholar 

  40. Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2 XLS software for primary magma calculation. Geochem Geophys Geosyst 9(9):Q09001

    Article  Google Scholar 

  41. Herzberg C, Asimow PD (2015) PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochem Geophys Geosyst 16:563–578. https://doi.org/10.1002/2014GC005631

    Article  Google Scholar 

  42. Howarth GH, Harris C (2017) Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth Planet Sci Lett 475:143–151

    Article  Google Scholar 

  43. Howarth GH (2018) Olivine megacryst chemistry, Monastery kimberlite: Constraints on the mineralogy of the HIMU mantle reservoir in southern Africa. Lithos 314–315:658–668

    Article  Google Scholar 

  44. Huchon P, Jestin F, Cantagrel JM, Gaulier JM, Khirbash AI, S. and Gafaneh A. (1991) Extensional deformations in Yemen since Oligocene and the Africa-Arabia-Somalia triple junction. Annales Tectonicae 5:141–163

    Google Scholar 

  45. Huchon P, Khanbari K (2003) Rotation of the syn-rift stress field of the northern Gulf of Aden margin, Yemen. Tectonophysics 164:147–166

    Article  Google Scholar 

  46. Irvine TN (1967) Chromian spinel as a petrogenetic indicator: Part II. Petrologic applications. Can J Earth Sci 4:71–103

    Article  Google Scholar 

  47. Ivanov AV, Mukasa SB, Kamenetsky VS, Ackerson M, Demonterova EI, Pokrovsky BG, e Vladykin N.V. Kolesnichenko M.V. Litasov K.D. and Zedgenizov, D.A. (2018) Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chem Geol 483:442–462

    Article  Google Scholar 

  48. Jestin F, Huchon P, Gaulier JM (1994) The Somalia plate and the East African Rift System: present kinematics. Geophys J Int 116:637–654

    Article  Google Scholar 

  49. Jin S, Zhang Z, Cheng Z, Xie Q, Fei X, Santosh M, Wang F (2019) Compositions of olivine from the Wajilitag mafic-ultramafic intrusion of the Permian Tarim Large Igneous Province, NW China: Insights into recycled pyroxenite in a peridotite mantle source. J Asian Earth Sci 171:9–19

    Article  Google Scholar 

  50. Joffe S, Garfunkel Z (1987) Plate kinematics of the circum Red Sea—a reevaluation. Tectonophysics 141:5–22

    Article  Google Scholar 

  51. Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422

    Article  Google Scholar 

  52. Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  53. Kamenetsky DS, Chung S, Kamenetsky MB, Kuzmin DV (2012) Picrites from the Emeishan Large Igneous Province, SWChina: a Compositional Continuum in Primitive Magmas and their Respective Mantle Sources. J Petrol 53(10):2095–2113. https://doi.org/10.1093/petrology/egs045

    Article  Google Scholar 

  54. Kogarko LN, Ryabchikov ID (2000) Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J Asian Earth Sci 18:195–203

    Article  Google Scholar 

  55. Krishnamurthy P, Gopalan K, Macdougall JD (2000) Olivine compositions in picrite basalts and the Deccan volcanic cycle. J Petrol 41(7):1057–1069

    Article  Google Scholar 

  56. Larsen LM, Pedersen AK (2000) Processes in high-Mg high-T magma: evidence from olivine, chromite and glass in Palaeogence picrites from West Greenland. J Petrol 41:1071–1098

    Article  Google Scholar 

  57. Larsen LM, Pedersen AK, sundvoll B. and Frei R. (2003) Alkali picrites formed by melting of old metasomatized lithosphere mantle: Manîdlat member, Vaigat Formation, Palaeocene of West Greenland. J Petrol 44(1):3–38

    Article  Google Scholar 

  58. Le Bas MJ (2000) IUGS Reclassification of the High-Mg and Picritic volcanic Rocks. J Petrol 41(10):1467–1470

    Article  Google Scholar 

  59. Li C, Ripley EM (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. Chem Geol 275:99–104. https://doi.org/10.1016/j.chemgeo.2010.05.001

    Article  Google Scholar 

  60. Liipo J, Vuollo J, Nykanen V, Piirainen T, Pekkarinen L, Tuokko I (1995) Chromites from the early Proterozoic Outokumpu-Jormua ophiolite belt: a comparison with chromites from Mesozoic ophiolites. Lithos 36:15–27

    Article  Google Scholar 

  61. Manetti P, Capaldi G, Chiesa S, Civetta L, Conticelli S (1991) Magmatism of the eastern Red Sea margin in the northern part of Yemen from Oligocene to present. Tectenophysics 198(2–4):181–202

    Article  Google Scholar 

  62. Mattash, M.A. (1994): Study of the Cenozoic Volcanics and their associated intrusive rocks in Yemen in relation to rift development. Ph.D. Thesis, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest. 112p.

  63. Mattash MA, Pinarelli L, Vaselli O, Minissale A, Al-Kadasi M, Shawki MN, Tassi F (2013) Continental Flood Basalts and Rifting: Geochemistry of Cenozoic Yemen Volcanic Province. International Journal of Geosciences 4:1459–1466

    Article  Google Scholar 

  64. Mattash MA, Pinarelli L, Vaselli O, Minissale A, Jaimes-Viera MC, Al-Kadasi M, Shawki MN, Tassi F (2014) Geochemical evolution of southern Red Sea and Yemen flood volcanism: evidence for mantle heterogeneity. Arab J Geosci 7:4831–4850. https://doi.org/10.1007/s12517-013-1120-1

    Article  Google Scholar 

  65. Matzen AK, Wood BJ, Baker MB, Stolper EM (2017) The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature Geosciences 10:530–535. https://doi.org/10.1038/NGEO2968

    Article  Google Scholar 

  66. Melluso L, Mahoney JJ, Dallai L (2006) Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos 89:259–274

    Article  Google Scholar 

  67. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–675

    Article  Google Scholar 

  68. Menzies MA, Bosence D, El-Nakhal H, Al-Khirbash S, Al-Kadasi MA, Al-Subbary A (1990) Lithospheric extension and opening of the Red Sea: sediment-basalt relationship in Yemen. Terra Nova 2:340–350

    Article  Google Scholar 

  69. Mohr P, Zanettin B (1988) The Ethiopian Food basalt province. In: Macdougall JD (ed) Continental Flood Basalts. Kluwer, Dordrecht, pp 63–110

    Google Scholar 

  70. Morishita T, Arai S, Tamura A (2003) Petrology of an apatite-rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos 69:37–49

    Article  Google Scholar 

  71. Munteanu M, Wilson AH, Costin G, Yao Y, Lum JE, Jiang S-Y, Jourdan F, Gordon C, Cioaca EM (2017) The Mafic-Ultramafic Dykes in the Yanbian Terrane (Sichuan Province, SW China): Record of Magma Differentiation and Emplacement in the Emeishan Large Igneous Province. J Petrol 58(3):513–538. https://doi.org/10.1093/petrology/egx025

    Article  Google Scholar 

  72. Nasher, M.A. (2010): Geology and geochemistry of the Tertiary volcanic rocks and their allied intrusion at NW Ad-Dhala province, Yemen. Ph.D Thesis, Cairo University, Egypt: 250p.

  73. Nasher MA, Mattash MA, Ali M (2020) Geochemistry and petrogenesis of high-MgO ultramafic tertiary volcanic rocks from Bagah area, NW Ad Dhala Province. Yemen Arabian Journal of Geosciences 13(340):1–19. https://doi.org/10.1007/s12517-020-05331-9

    Article  Google Scholar 

  74. Natali C, Beccaluva L, Bianchini GG, Ellam RM, Savo A, Siena F, Stuart FM (2016) High-MgO lavas associated to CFB as indicators of plume-related thermochemical effects: the case of ultratitaniferous picrite-basalt from the Northern Ethiopian-Yemeni plateau. Gondwana Res 34:29–48. https://doi.org/10.1016/j.gr.2016.02.009

    Article  Google Scholar 

  75. Nekrylov N, Portnyagin MV, Kamenetsky VS, Mironov NL, Churikova TG, Plechov PY, Abersteiner A, Gorbach NV, Gordeychik BN, Krasheninnikov SP, Tobelko DP, Shur MY, Tetroeva SA, Volynets AO, Hoernle K, Wörner G (2018) Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: Implications for spatial compositional variability of subarcmantle and its oxidation state. Lithos 322:212–224

    Article  Google Scholar 

  76. Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30:291–307

    Article  Google Scholar 

  77. Niu Y, Wilson M, Humphreys ER, O’Hara MJ (2011) The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. J Petrol 52:1443–1468. https://doi.org/10.1093/petrology/egr030

    Article  Google Scholar 

  78. Panina LI, Motorina IV (2013) Meimechites, Porphyritic Alkaline Picrites, and Melanephelinites of Siberia: Conditions of Crystallization, Parental Magmas, and Sources. Geochem Int 51(2):109–128

    Article  Google Scholar 

  79. Putirka, K.D. (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems. 6; Q05l08. https://doi.org/10.1029/2005GC000915

  80. Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206. https://doi.org/10.1016/j.chemgeo.2007.01.014

    Article  Google Scholar 

  81. Révillon S, Arndt NT, Hallot E (1999) Petrogenesis of picrites from the Caribbean Plateau and the North Atlantic magmatic province. Lithos 49:1–21

    Article  Google Scholar 

  82. Révillon S, Arndt NT, Chauvel C, Hallot E (2000) Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: the plumbing system of an oceanic plateau. J Petrol 41(7):1127–1153

    Article  Google Scholar 

  83. Robertson Group plc (1992) Technical report. Republic of Yemen, The Natural Resources Project. Contract 2, Satellite mapping: Ministry of Oil and Mineral Resources, Sana’a, and Robertson Group plc. United Kingdom. 3; 1.1–8.6.

  84. Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Miner Petrol 29:275–289

    Article  Google Scholar 

  85. Ryabchikov ID, Kogarko LN, Solovova IP (2009) Physicochemical conditions of magma generation at the base of the Siberian plume, from data on micrometric melt inclusions in meimechites and alkali picrites of the Maimecha-Kotui province. Petrology 17(3):287–299

    Article  Google Scholar 

  86. Shellnutt JG (2014) The Emeishan large igneous province: a synthesis. Geosci Front 5:369–394. https://doi.org/10.1016/j.gsf.2013.07.003

    Article  Google Scholar 

  87. Shellnutt JG, Pham TT (2018) Mantle Potential Temperature Estimates and Primary Melt Compositions of the Low-Ti Emeishan Flood Basalt. Frontiers in Earth Sciences. https://doi.org/10.3389/feart.2018.00067

    Article  Google Scholar 

  88. Simkin T, Smith JV (1970) Minor-element distribution in olivine. Journal of Geology 78(3):304–325

    Article  Google Scholar 

  89. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson I, Suschevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. https://doi.org/10.1126/science.1138113

    Article  Google Scholar 

  90. Sobolev AV, Sobolev SV, Kuzmin DV, Malitch KN, Petrunin AG (2009) Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ Geol Geophys 50:999–1033

    Article  Google Scholar 

  91. Stevens RE (1944) Composition of some chromites of the western Hemisphere. Am Miner 29:1–34

    Google Scholar 

  92. Tard, F., Masse, P., Walgenwitz, E. and Gruneisen, P (1991) The volcanic passive margin in the vicinity of Aden, Yemen. Bulletin Centres Recherche´ Exploration–Production Elf-Aquitaine. 15; 1–9.

  93. Ukstins IA, Renne PR, Wolfenden E, Baker J, Ayalew D, Menzies MA (2002) Matching conjugate rifted margins: 40Ar/39Ar chrono-stratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and Yemen. Earth Planet Sci Lett 198:289–306

    Article  Google Scholar 

  94. Ukstins IA, Baker JA, Al-Kadasi M, Al-Subbary A-K, Knight K, Riisager P, Thirlwall MF, Peate DW, Renne PRR, Menzies MA (2005) Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen. Bull Volcanol 68:135–156

    Article  Google Scholar 

  95. Vasil’ev Y.R. Gora M.P. and Kulikova A.V. (2014) Meimechite-Picrite Dikes of the Guli Pluton in the Northern Siberian Platform. Dokl Earth Sci 455(2):395–398

    Article  Google Scholar 

  96. Vasil’ev Y.R. Gora M.P. and Kuz’min D.V. (2017) Petrology of foiditic and meymechitic volcanism in the Maimecha-Kotui province (Polar Siberia). Russ Geol Geophys 58:659–673

    Article  Google Scholar 

  97. Walter MJ (1998) Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  98. Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Miner 93:1142–1147. https://doi.org/10.2138/am.2008.2758

    Article  Google Scholar 

  99. White B, McKenzie D (1989) Magmatism at rift zones; the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  100. Xiao L, Xu YG, Mei HJ, Zheng YF, He B, Pirajno F (2004) Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume–lithosphere interaction. Earth Planet Sci Lett 228:525–546

    Article  Google Scholar 

  101. Xu Y, Chung S, Jahn B, Wu G (2001) Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China. Lithos 58:145–168

    Article  Google Scholar 

  102. Xu R, Liu Y (2016) Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province. Lithos 266–267:362–366

    Article  Google Scholar 

  103. Yang Z, Zhou J (2013) Can we identify source lithology of basalt? Scientific Reports 3:1856. https://doi.org/10.1038/srep01856

    Article  Google Scholar 

  104. Zhang Z, Mao J, Wang F, Hao Y, Mahoney J (2005) Mantle plume activity and melting conditions: Evidences from olivines in Picritic-Komatiitic rocks from the Emeishan Large Igneous Province, southwestern China. Episodes 28(3):171–176

    Article  Google Scholar 

  105. Zhang Z, Mahoney JJ, Mao J, Wang F (2006) Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province. China Journal of Petrology 47(10):1997–2019

    Article  Google Scholar 

  106. Zumbo V, Feraud G, Bertrand H, Chazot G (1995) 40Ar/ 39Ar geochronology of the Tertiary magmatic activity in southwestern Yemen during the early Red Sea-Gulf of Aden rifting. J Volcanol Geoth Res 65:265–279

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their sincere gratitude to Professor Shoji Arai, who facilitated the achievement of electron microprobe analyses for the olivine and Cr-spinel from studied meimechite rocks at the Department of Earth Sciences, Faculty of Sciences, Kanazawa University, Kanazawa, Japan. Also, great thanks are due to my colleague Dr. Mohammed Hail Hakimi for his faithful help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mukhtar A. Nasher.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasher, M.A., Ali, M. Olivine and Cr-spinel as indicators of the petrogenesis and partial melting conditions of the high-MgO ultramafic volcanic rocks from NW Ad Dhala Province—Yemen. Acta Geochim (2021). https://doi.org/10.1007/s11631-021-00454-6

Download citation

Keywords

  • Olivine
  • Cr-spinel
  • High-MgO ultramafic volcanic rocks
  • meimechite
  • Afro-arabian LIP
  • Yemen