Episodic crustal growth and reworking at the southeastern margin of the North China Craton: evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area

Abstract

The cratonization history of the North China Craton (NCC) and the nature of tectonothermal events are still highly controversial. Tonalite-trondhjemite-granodiorite (TTG) gneisses, as the dominant lithological assemblages in Archean metamorphic terranes, can provide significant clues to the magmatic and metamorphic evolution of Precambrian crust. This study presents zircon laser-ablation inductively-coupled-plasma mass spectrometry U–Pb ages, trace-element, and in-situ LA-MC-ICP-MS zircon Hf isotope data for the TTG gneisses from the Bengbu-Wuhe area on the southeastern margin of the NCC. Cathodoluminescence images and trace elements indicated that magmatic zircons display the characteristics of euhedral-subhedral crystals with oscillatory growth zoning structures, high ΣREE contents, marked Ce positive anomalies, and Pr–Eu negative anomalies. The metamorphic zircons display the spherical-oval crystals with distinct core-rim structures, high and homogeneous luminescent intensity, lower ΣREE, Nb, Ta, Hf contents, relative flat REE patterns, weak Ce positive anomalies, and Pr-Eu negative anomalies. The Ti–in–zircon geothermometer data indicate that the crystallization temperature of the TTG gneiss ranged from 754 to 868 °C. Zircon U–Pb ages indicate that the TTG gneisses formed at 2.79–2.77 Ga and 2.50 Ga and underwent metamorphism at 2.57–2.52 Ga. The Hf isotopic data indicate that the magmatic zircons exhibit high, positive εHf(t) values close to those of the coeval depleted mantle, whereas the metamorphic zircons exhibit negative or nil εHf(t) values. This implies that the TTG gneisses were derived from the partial melting of the ~ 2.9–2.6 Ga juvenile crustal sources mixed with ~ 3.0–2.8 Ga ancient crustal materials. Combined with the regional tectonic evolution, we propose that the metamorphic basement at the southeastern margin of the NCC underwent episodic crustal growth at ~ 2.7 and ~ 2.5 Ga and subsequently underwent crustal reworking or re-melting of the ancient crust during the Neoarchean. The Neoarchean TTG gneisses might have been derived from the partial melting of lower crustal materials related to plate subduction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source: TTG gneiss of Huai’an used by Liu et al. (2009); TTG gneiss of Songshan used by Zhou et al. (2009); granitoid gneiss of Jiaobei terranes used by Liu et al. (2013b); and TTG gneiss of Huoqiu used by Liu et al. (2014)

Fig. 9

References

  1. Barker F, Arth JG (1976) Generation of trondhjemite–tonalite liquids and Archean bimodal trondhjemite-basalt suits. Geology 4(10):596–600

    Article  Google Scholar 

  2. Belousova EA, Griffin WL, O’Reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Pet 143(5):602–622

    Article  Google Scholar 

  3. Carley TL, Miller CF, Wooden JL, Padilla AJ, Schmitt AK, Economos RC, Binderman IN, Jordan BT (2014) Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth Planet Sci Lett 405:85–97

    Article  Google Scholar 

  4. Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80(1–4):33–44

    Article  Google Scholar 

  5. Ding J, Shi Y, Kröner A, Anderson JL (2018) Constraints on sedimentary ages of the Chuanlinggou formation in the ming tombs, Beijing, North China Craton: LA-ICP-MS and SHRIMP U-Pb dating of detrital zircons. Acta Geochim 37:257–280

    Article  Google Scholar 

  6. Diwu CR, Sun Y, Guo A, Wang HL, Liu XM (2011) Crustal growth in the North China Craton at ~2.5Ga: evidence from in-situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Res 20(1):149–170

    Article  Google Scholar 

  7. Geng YS, Shen QH, Ren LD (2010) Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China craton. Acta Petr Sin 26(7):1945–1966 (in Chinese with English abstract)

    Google Scholar 

  8. Gong JH, Zhang JX, Yu SY, Li HK, Hou KJ (2012) Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications. Chin Sci Bull 57(28–29):2715–2728 (in Chinese with English abstract)

    Google Scholar 

  9. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reillya SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes Lithos 61(3–4):237–269

    Google Scholar 

  10. Guo SS, Li SG (2009) SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeastern margin of the North China. Sci China Ser D Earth Sci 52(8):1039–1045

    Article  Google Scholar 

  11. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18(4):423–439

    Article  Google Scholar 

  12. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53(1):27–62

    Article  Google Scholar 

  13. Huang JQ, Ren JS, Jiang CF, Zhang ZM, Xu ZQ (1977) An outline of the tectonic characteristics of China. Acta Geol Sin 2:117–135 (in Chinese with English abstract)

    Google Scholar 

  14. Iizuka T, Hirata T, Komiya T, Rino S, Maruyama S (2005) U-Pb and Lu–Hf isotope systematics of zircons from the Mississippi River Sand: implications for reworking and growth of continental crust. Geology 33(6):485–488

    Article  Google Scholar 

  15. Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for early crustal evolution. Geochim Cosmochim Acta 45(9):1633–1652

    Article  Google Scholar 

  16. Kusky TM (2011) Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res 20(1):26–35

    Article  Google Scholar 

  17. Li QL (2015) Characteristics and analytical methods of the U-Pb dating system. Bull Miner Pet Geochem 34(3):491–500 (in Chinese with English abstract)

    Google Scholar 

  18. Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC, Tao H (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U-Pb Age. Geostand Geoanal Res 34(2):117–134

    Article  Google Scholar 

  19. Li QL, Liu Y, Tang GQ, Wang KY, Ling XX, Li J (2018) Zircon Th–Pb dating by secondary ion mass spectrometry. J Anal At Spectrom 9(33):1536–1544

    Article  Google Scholar 

  20. Liu CH, Cai J (2017) Provenance and depositional age of the Baiyunshan formation of the Fengyang Group in the Wuhe complex: constraints from zircon U-Pb age and Lu–Hf isotopic studies. Acta Petrol Sin 33(9):2867–2880 (in Chinese with English abstract)

    Google Scholar 

  21. Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In-situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  22. Liu F, Guo JH, Liu XP, Diwu CR (2009) Crustal growth at ~25 Ga in the North China Craton: evidence from whole rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane. Chin Sci Bull 54(24):4704–4713 (in Chinese with English abstract)

    Article  Google Scholar 

  23. Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA–ICP–MS. Chin Sci Bull 55(15):1535–1546

    Article  Google Scholar 

  24. Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F, Meng E (2013a) The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: constraints from U-Th–Pb and Lu–Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Res 224:287–303

    Article  Google Scholar 

  25. Liu YC, Wang AD, Li SG, Rolfo F, Li Y, Groppo C, Gu XF, Hou ZH (2013b) Composition and geochronology of the deep-seated xenoliths from the southeastern margin of the North China Craton. Gondwana Res 23(3):1021–1039

    Article  Google Scholar 

  26. Liu L, Yang XY, Santosh M, Aulbach S (2014) Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton: geochemical, zircon U-Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Res 28(3):1002–1018

    Article  Google Scholar 

  27. Liu YC, Wang CC, Zhang PG, Nie JZ (2015) Growth and metamorphic evolution of the Precambrian lower crust at the southeastern margin of the North China Block. Acta Petrol Sin 31(10):2847–2862 (in Chinese with English abstract)

    Google Scholar 

  28. Liu CH, Zhao GC, Liu FL, Cai J (2018) The southwestern extension of the Jiao-Liao-Ji belt in the North China Craton: geochronological and geochemical evidence from the Wuhe Group in the Bengbu area. Lithos 304–307:258–279

    Article  Google Scholar 

  29. Liu CH, Liu FL, Cai J, Zhang W (2019a) Comparisons of the Fengyang and Wuhe Groups in the Bengbu area with meta-sedimentary successions in the Jiaobei Area: constraints from zircon U-Pb–Lu–Hf isotopic and trace element studies. Bull Mineral Petrol Geochem 38(4):681–703 (in Chinese with English abstract)

    Google Scholar 

  30. Liu CH, Zhao GC, Liu FL, Cai J (2019b) A Palaeoarchean-Mesoarchean micro-continent entrained in the Jiao-Liao-Ji Belt at the southeastern North China Craton: evidence from the zircon record in the Bengbu area. Geol Mag 156(9):1–22

    Article  Google Scholar 

  31. Liu S, Feng C, Fan Y, Tai KR, Gao TJ, Coulson IM (2020) Geochemical constraints on the origin of Early Cretaceous alkaline intrusions and its tectonic implication, Sulu Orogenic Belt, Eastern North China Craton. Acta Geochim 39:616–641

    Article  Google Scholar 

  32. Ludwig KR (2003) User’s manual for Isoplot/EX, version 3.00: a geochronological toolkit for Microsoft Excel. In Special Publication (Vol.4, pp. 1–70) Berkeley: Berkeley Geochronology Center

  33. Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust-comparison with modern process. Lithos 30(3–4):373–388

    Article  Google Scholar 

  34. Martin H, Moyen JF (2002) Secular changes in TTG composition as markers of the progressive cooling of the earth. Geology 30(4):319–322

    Article  Google Scholar 

  35. Moyen JF, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  36. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51(1–4):1–25

    Article  Google Scholar 

  37. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184(1):123–138

    Article  Google Scholar 

  38. Santosh M (2010) Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Res 178:149–167

    Article  Google Scholar 

  39. Santosh M, Sajeev K, Li JH (2006) Extreme crustal metamorphism during Colombia supercontinent assembly: evidence from North China Craton. Gondwana Res 10(3–4):256–266

    Article  Google Scholar 

  40. Smithies RH (2000) The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182(1):115–125

    Article  Google Scholar 

  41. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324

    Article  Google Scholar 

  42. Tu YJ (1994) On the Late Archean TTG–gneiss in the north Jianghuai area. Anhui Geol 4(4):15–23 (in Chinese with English abstract)

    Google Scholar 

  43. Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y, Sun WD (2011) Application of resolution in-situ laser ablation ICP–MS in trace element analyses. Geochimica 40(1):83–98 (in Chinese with English abstract)

    Google Scholar 

  44. Wan YS, Dong CY, Wang W, Xie HQ, Liu DY (2010) Archean basement and a Paleoproterozoic Collision Orogen in the Huoqiu Area at the Southeastern Margin of North China Craton: evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta Geol Sin 84(1):91–104

    Article  Google Scholar 

  45. Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhang HY, Du LL, Yang YH, Diwu CR (2011) ~27 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, Western Shandong Province): further evidence of understated event from zircon U-Pb dating and Hf isotopic composition. Precambrian Res 186(1–4):169–180

    Article  Google Scholar 

  46. Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW, Liu DY (2017) Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: a synthesis. Acta Pet Sin 33(5):1405–1419 (in Chinese with English abstract)

    Google Scholar 

  47. Wang AD, Liu YC, Gu XF, Li SG, Xie HQ (2009) Zircon SHRIMP U-Pb dating for garnet-bearing gneissic granite at Laoshan, Bengbu: Implications for recycling of the subducted continental crust of the South China Block. J Miner Pet 29(2):38–43 (in Chinese with English abstract)

    Google Scholar 

  48. Wang AD, Liu YC, Gu XF, Hou ZH, Song B (2012) Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications. Precambrian Res 220–221:65–79

    Article  Google Scholar 

  49. Wang AD, Liu YC, Santosh M, Gu XF (2013) Zircon U-Pb geochronology, geochemistry and Sr–Nd–Pb isotopes from the metamorphic basement in the Wuhe complex: implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids. Geosci Front 4(1):57–71

    Article  Google Scholar 

  50. Wang QY, Zheng JP, Pan YM, Dong YJ, Liao FX, Zhang Y, Zhang L, Zhao G, Tu ZB (2014) Archean crustal evolution in the southeastern North China Craton: new data from the Huoqiu Complex. Precambrian Res 255:294–315

    Article  Google Scholar 

  51. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308(5723):841–844

    Article  Google Scholar 

  52. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Pet 151(4):413–433

    Article  Google Scholar 

  53. Wiedenbeck M, Allé P, Corfu F, Griffin W, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  54. Wu YB, Zheng YF (2004) Mineralogical study of zircon genesis and constraints on U-Pb age interpretation. Chin Sci Bull 49(16):1589–1604 (in Chinese with English abstract)

    Article  Google Scholar 

  55. Wu FY, Zhao GC, Wilde SA, Sun DY (2005) Nd isotopic constraints on the crustal formation of the North China Craton. J Asian Earth Sci 24(5):523–545

    Article  Google Scholar 

  56. Wu FY, Li XH, Yang JH, Zheng YF (2007) Discussions on the petrogenesis of granites. Acta Pet Sin 23(6):1217–1238 (in Chinese with English abstract)

    Google Scholar 

  57. Xiao LL, Liu FL, Zhang J (2019) Response to the Early Neoarchean tectono–thermal events in the North China Craton: Evidence of ca 27 Ga TTG gneisses from the Zuoquan metamorphic complex. Acta Pet Sin 35(2):325–348 (in Chinese with English abstract)

    Google Scholar 

  58. Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Ren P, Liu DY (2015) Petrogenesis of ca. 2.7 Ga TTG rocks in the Jiaodong terrane, North China craton and its geological implications. Acta Petrol Sin 31(10):2974–2990 (in Chinese with English abstract)

    Google Scholar 

  59. Xu WL, Gao S, Wang QH, Wang DY, Liu YS (2006) Mesozoic crustal thickening of the eastern North China Craton: evidence from eclogite xenoliths and petrologic implications. Geology 34(9):721–724

    Article  Google Scholar 

  60. Yang DB, Xu WL, Pei FP, Wang QH (2009) Petrogenesis of the Paleoproterozoic K-feldspar granites in Bengbu uplift: constraints from petro–geochemistry, zircon U-Pb dating and Hf isotope. J Earth Sci 34(1):148–164 (in Chinese with English abstract)

    Google Scholar 

  61. Yang DB, Xu WL, Wang QH, Pei FP (2010) Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: constraints on the tectonic evolution of the eastern North China Craton. Lithos 114(1–2):200–216

    Article  Google Scholar 

  62. Yang XY, Wang BH, Du ZB, Wang QC, Wang YX, Tu ZB, Zhang WL, Sun WD (2012) On the metamorphism of the Huoqiu Group, formation ages and BIF forming mechanism of the Huoqiu iron deposit, South margin of the North China Craton. Acta Petrol Sin 28(11):3476–3496 (in Chinese with English abstract)

    Google Scholar 

  63. Zhai MG, Santosh M (2011) The Early Precambrian odyssey of North China Craton: a synoptic overview. Gondwana Res 20(1):6–25

    Article  Google Scholar 

  64. Zhai MG, Bian AG, Zhao TP (2000) The amalgamation of the supercontinent of North China Craton at the end of the Neoarchean, and its break-up during the Late Palaeoproterozoic and Mesoproterozoic. Sci China Ser D Earth Sci 43(1Supplement):219–232

  65. Zhai MG, Guo JH, Liu WJ (2005) Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J Asian Earth Sci 24(5):547–561

    Article  Google Scholar 

  66. Zhai MG, Li TS, Peng P, Hu B, Liu F, Zhang Y (2010) Precambrian key tectonic events and evolution of the North China Craton. Spec Publ-Geol Soc London 338(1):235–262

    Article  Google Scholar 

  67. Zhang RY, Sun Y (2017) Formation and evolution of Early Precambrian basement in the southern North China Craton. Acta Pet Sin 33(10):3027–3041 (in Chinese with English abstract)

    Google Scholar 

  68. Zhang L, Ren ZY, Nichols ARL, Zhang YH, Zhang Y, Qian SP, Liu JQ (2014) Lead isotope analysis of melt inclusions by LA–MC–ICP–MS. J Anal At Spectrom 29(8):1393–1405

    Article  Google Scholar 

  69. Zhao GC, Wilde SA, Cawood PA, Lu LZ (1998) Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev 40:706–721

    Article  Google Scholar 

  70. Zhao GC, Wilde S, Cawood P, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res 107(1–2):45–73

    Article  Google Scholar 

  71. Zhao GC, Kröner A, Wilde SA, Sun M, Li SZ, Li XP, Zhang J, Xia XP, He YH (2007) Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen. Geol Mag 144:753–775

    Article  Google Scholar 

  72. Zhao GC, Wilde SA, Sun M, Guo JH, Kröner A, Li SZ, Li XP, Zhang J (2008) SHRIMP U-Pb zircon geochronology of the Huai'an complex: constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Am J Sci 308(3):270–303

    Article  Google Scholar 

  73. Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu X, Wu FY (2006) Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in Dabie orogen. Chem Geol 231(1–2):135–158

    Article  Google Scholar 

  74. Zhong SH, Feng CY, Seltmann R, Li DX, Qu HY (2018) Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? the effect of mineral inclusions on zircon trace element composition. Lithos 314–315:646–657

    Article  Google Scholar 

  75. Zhou YY, Zhao TP, Xue LW, Wang SY, Gao JF (2009) Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area. North China Craton Acta Pet Sin 25(2):331–347 (in Chinese with English abstract)

    Google Scholar 

  76. Zhou YY, Zhao TP, Zhai MG, Gao JF, Sun QY (2014) Petrogenesis of the Archean tonalite–trondhjemite–granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation. Precambrian Res 255:514–537

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (Nos. 41303041 and 41763005), Open Fund (Nos. Z1909, Z1912, RGET1804, 15LCD08) of the State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, and State Key Laboratory of Continental Dynamics. We are grateful to the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS) for their assistance with the zircon Hf isotope analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andong Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Wang, A., Pan, J. et al. Episodic crustal growth and reworking at the southeastern margin of the North China Craton: evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area. Acta Geochim (2021). https://doi.org/10.1007/s11631-021-00451-9

Download citation

Keywords

  • In-situ zircon Hf isotope
  • Neoarchean
  • North China Craton
  • TTG gneiss
  • Zircon U–Pb dating