Trace and rare earth element geochemistry of the black and grey shales of the Calabar Flank, Southeastern Nigeria: constraints on the depositional environment and the degree of metal enrichment

Abstract

This study focuses on the trace and rare earth elements (REE) geochemistry of the Nkporo and Ekenkpon Shales of the Calabar Flank. The main aim is to infer their depositional environment and the degree of their metal enrichment. The shale samples were analyzed using inductively coupled plasma mass spectrometry. The results indicated that the mean concentrations of K, Na, and Fe in Nkporo and Ekenkpon Shales are 1.45, 0.4, and 4.17 wt%, and 1.11, 0.44, and 5.42 wt%; respectively. The Nkporo Shale is enriched with the following trace elements; P > Mn > Sr > Ba > Zn > Ce > Rb > Zr > V>Cr > Ni and depleted in the following trace elements; Ta > Ge > Sb > Bi > Cd > Ag > Te > In > Hg. While the Ekenkpon Shale is enriched with the following trace elements; P > Mn > Ba > Sr > V>Ce > Zr > Rb > Cr > Zn > Ni and depleted in; Sb > Ge > Bi > Ag > Ce > Te > In > Hg. The concentration of redox-sensitive elements such as V, Ni, Mo, U, Cu, Cr, Re, Cd, Sb, Ti, Mn, and their ratio V/Mo and U/Mo in the black and grey shale samples show different patterns. The REE obtained from the Nkporo and Ekenkpon Shales were PAAS normalized. The Nkporo Shale showed a slightly flat light rare-earth element (LREE), middle rare-earth element (MREE), and heavy rare earth element (HREE) pattern enrichment. Ce/Ce* ranges from 0.95 to 1.09 in Nkporo Shale and 0.67 to 1.40 in Ekenkpon Shale. The Ekenkpon Shale showed a slight LREE, MREE enrichment, and depleted HREE patterns. The Mn contents and U/Mo ratio in Nkporo and Ekenkpon Shales suggests a poor oxygen transitional environment. The V/Mo and V/(V + Ni) ratios indicated that the Nkporo shales were deposited in an anoxic to suboxic conditions and Ekenkpon shales were also deposited under an anoxic to suboxic conditions. The V/Ni ratio indicated that the organic matter in the Nkporo shale is terrigenous while that of the Ekenkpon shales are both terrigenous and marine in origin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abou El-Anwar EA, Mekky HS, Wahab WA (2019) Geochemistry, mineralogy and depositional environment of Black Shales of the Duwi Formation, Qusseir Area, Red Sea Coast, Egypt. Carbonates Evaporites 34(3):883–892

    Article  Google Scholar 

  2. Adegoke AK, Abdullah WH, Hakimi MH, Yandoka BM, Mustapha KA, Aturamu AO (2014) Trace elements geochemistry of Kerogen in upper cretaceous sediments, Chad (Bornu) Basin, Northeastern Nigeria: origin and Paleo-redox conditions. J Afr Earth Sci 100:675–683

    Article  Google Scholar 

  3. Ajayi TR, Islander FY, Asubiojo OI, Klein DE (1989) Geochemistry of upper Creataceous clastic sediments of Ifon Area, Southwestern Nigeria. J Min Geol 25:11–24

    Google Scholar 

  4. Ajayi TR, Oyawale AA, Islander FY, Asubiojo OI, Klein DE, Adediran AI (2006) trace and rare earth elements geochemistry of Oshosun Sediments of Dahomey Basin, Southwestern Nigerian. J Appl Sci 6:2067–2076

    Article  Google Scholar 

  5. Algeo TJ, Lyons TW (2006) Moetotal organic carbon covariation in modern anoxic marine environments: implications for analysis of Paleoredox and Paleohydrographic conditions. Paleoceanography 21:10–16

    Article  Google Scholar 

  6. Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in Core Shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

    Article  Google Scholar 

  7. Algeo TJ, Tribovillard N (2009) Environmental analysis of Paleoceanographic systems based on Molybdenume uranium covariation. Chem Geol 268:211–225

    Article  Google Scholar 

  8. Brumsack HJ (2006) The trace metal content of recent organic carbonrich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol 232:344–361

    Article  Google Scholar 

  9. Clark FW, Etnst W (1970) Geochemical facies analysis methods in geochemistry and geophysics II. Elsevier, London

    Google Scholar 

  10. Duncan L (1981) The geochemistry of sedimentary rocks in the vicinity of the Tom Pb Zn Ba deposit Yukon Territory Canada. J Geochem Explor 15:203–217

    Article  Google Scholar 

  11. Ehinola OA, Sonibare OO, Javie DM, Oluwale EA (2008) Geochemical appraisal of organic matter in the Mid-cretaceous sediments of Calabar Flank, Southeastern Nigeria. Eur J Sci Res 23(4):567–577

    Google Scholar 

  12. Galarraga F, Reategui K, Martïnez A, Martínez M, Llamas JF, Márquez G (2008) V/Ni ratio as a parameter in Palaeoenvironmental characterisation of non-mature medium-crude oils from several Latin American Basins. J Petrol Sci Eng 61:9–14

    Article  Google Scholar 

  13. Gallego-Torres D, Martinez-Ruiz F, De Lange GJ, Jimenez-Espejo FJ, Ortega-Huertas M (2010) Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern mediterranean sapropels. Palaeogeogr Palaeoclimatol Palaeoecol 293(1):76–89

    Article  Google Scholar 

  14. Garrett RG, Goss TI, Systems Approach Ltd. (1978) The evaluation of sampling and analytical variation in regional geochemistry surveys. In: Watterson JR, Theobald PK (eds) Proceedings of the 7th International Geochemical Exploration Svmposium, Rexdale, Ontario, Canada. pp 371–378

  15. Graf JL Jr (1977) Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Econ Geol 72:527–548

    Article  Google Scholar 

  16. Harvey B, Tracy JT (1996) Petrology: Igneous, Sedimentary and Metamorphic, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  17. Hawkes LA, Webb JS (1962) Geochemistry in mineral exploration. Harper and Row, New York

    Google Scholar 

  18. Hetzel A, Brumsack HJ, Schnetger B, Bottcher ME (2006) Inorganic Geochemical Characterization of Lithologic Units Recovered during ODP Leg 207 (Demerara rise). In: Mosher DC, Erbacher J, Malone MJ (eds) Proceedings of the ocean drilling program, scientifc results, vol 207. Ocean Drilling Program, College Station, pp 1–37

    Google Scholar 

  19. Jeon J, Shin D, Im H (2020) Depositional environment of redox-sensitive trace elements in the Metalliferous Black Slates of the Okcheon Metamorphic Belt, South Korea. Geosci J 24(2):177–193

    Article  Google Scholar 

  20. Jiang SY, Chen YQ, Ling HF, Yang JH, Feng HZ, Ni P (2006) Trace and rare earth element geochemistry and Pb–Pb dating of Black Shales and intercalated Ni–Mo–PGE–Au Sulfide Ores in Lower Cambrian Strata, Yangte Platform, South China. Mineral Depos 41(5):453–467

    Article  Google Scholar 

  21. Lewis JW Jr, Bandeira CM (1981) The use of petroleum well samples and data for geochemical prospecting of metals in sedimentary basins. J Geochem Explor 15:251–260

    Article  Google Scholar 

  22. McLennan SM (1989) Rare earth element in sedimentary rocks: influence of provenance and sedimentary process. Rev Mineral 21:169–200

    Google Scholar 

  23. Nance WB, Taylor SR (1974) Rare earth element pattern and crustal evolution in Australian post Archean sedimentary rocks. Geochim Cosmochin Acta 40:1539–1557

    Article  Google Scholar 

  24. Obaje NG (2009) Geology and mineral resources of Nigeria. Springer, Berlin, p 219

    Google Scholar 

  25. Oyetade OP, Abada OK (2020) The application of seismic attribute analyses for enhanced reserve estimation in “KOA” field, Niger Delta. J Iber Geol. https://doi.org/10.1007/s41513-020-00130-3

  26. Pi DH, Jiang SY, Luo L, Yang JH, Hong-Fei Ling HF (2014) Depositional environments for stratiform with Erite Deposits in the Lower Cambrian Black Shale Sequence of the Yangtze Platform, Southern Qinling Region, SW China: evidence from redox-sensitive trace element geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 398:125–131

    Article  Google Scholar 

  27. Quinby-Hunt MS, Wilde P (1994) Thermodynamic zonation in the Black Shale facies based on iron–manganese–vanadium content. Chem Geol 113:297–317

    Article  Google Scholar 

  28. Ross DJK, Bustin RM (2009) Investigating the use of sedimentary geochemical proxies for Palaeoenvironment interpretation of thermally mature organic-rich Strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem Geol 260:17–19

    Article  Google Scholar 

  29. Rudnick RL, Gao S (2014) Composition of the continental crust, treatise on Geochemistry (Second Edition), 4, 1. https://doi.org/10.1016/B978-0-08-095975-7.00301-6ù

  30. Shields GA, Stille P (2001) Diagenetic constrains on the use of cerium anomalies as Palaeoseawater proxies: an isotopic and REE study of Cambrian phosphorites. Chem Geol 175:29–48

    Article  Google Scholar 

  31. Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochem Cosmochim Acta 35:1273–1285

    Article  Google Scholar 

  32. Taylor SR (1966) The origin and growth of continents. Tectonophysics 4:17–34

    Article  Google Scholar 

  33. Taylor SR (1969) Trace element chemistry of Andesites and Associated Cale-alkaline Rocks. In: McBimey AR (ed) Proceeding of the Andesite Conference. Department of the Geology Miner Industries Oregon, Ohio, pp 43–63

    Google Scholar 

  34. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as Paleoredox and Paleoproductivity Proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  35. Turekian KK, Wedepohl H (1961) Distribution of elements in some major units of the Earth’s Crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  36. Udoh IC (2006) Geochemical studies of Ekepon and Nkporo Shale in part of Calabar Flank South-Eastern Nigeria

  37. Zuo X, Li C, Zhang J, Ma G, Chen P (2020) Geochemical characteristics and depositional environment of the Shahejie Formation in Binnan oilfield, China. J Geophys Eng 17:539–551

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oluwaseye Peter Oyetade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adamu, C.I., Omang, B.O., Oyetade, O.P. et al. Trace and rare earth element geochemistry of the black and grey shales of the Calabar Flank, Southeastern Nigeria: constraints on the depositional environment and the degree of metal enrichment. Acta Geochim (2020). https://doi.org/10.1007/s11631-020-00434-2

Download citation

Keywords

  • Rare-earth elements (REE)
  • Trace elements
  • Calabar Flank
  • Suboxic
  • Anoxic