Skip to main content

Petrology and geochemical framework of dolerites dykes of Temté, North Cameroon, Central Africa

Abstract

The Temté basement in North Cameroon is crosscut by dyke swarms with N 20°–40° trending, including dykes 15–30 m wide, up to 3 km-long. Representative rocks exhibit intersertal to sub-ophitic textures. Electron microprobe analyses identified diopside, augite, pargasite, biotite, Ti-magnetite, plagioclase, and sanidine. Whole-rock ICP-MS and ICP-AES chemical analyses showed compositions of basaltic andesite, basaltic trachyandesite and trachyandesite in composition. Igneous differentiation was likely governed by fractional crystallization associated with limited fluid metasomatism. Some lavas could have been moderately contaminated by crustal materials during feeding of local cracks through turbulent magma flows. Discrimination geochemical diagrams and immobile trace and REE element ratios show that the mantle source of Temté dolerites was a deep phlogopite-bearing EMII mantle component and has undergone moderate to high partial melting rate. Correlations of fieldwork and analytical data with previous results evidence the Temté dolerite dyke swarms as fingerprints of crustal extension accompanying regional uplift in an active continental margin when early rifting led to the formation of the Poli marginal basin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

modified from Winchester and Floyd 1977), b Ti/Zr diagram after Pearce (1982)

Fig. 10
Fig. 11

References

  • Bryan SE, Ernst RE (2008) Revised definition of Large Igneous Provinces (LIPs). Earth Sci Rev 86(1–4):175–202

    Article  Google Scholar 

  • Cabanis B, Thiéblemont D (1988) La discrimination des tholéiites continentales et des basaltes arrière–arc. Proposition d’un nouveau diagramme Th–Tbx3–Tax2. Bulletin de la Société Géologique de France 8 (IV, 6):927–935

  • Campbell IH (1985) The difference between oceanic and continental tholeiites: a fluid dynamic explanation. Contrib Mineral Petrol 91:37–43

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1993) Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:547–550

    Article  Google Scholar 

  • Dorbath C, Dorbath L, Fairhead JD, Stuart GW (1986) A teleseismic delay time study across the Central African shear zone in the Adamawa region of Cameroon, West Africa. Geophys J R Astron Soc 86:751–766

    Article  Google Scholar 

  • Dumont JF, Toteu SF, Penaye J (1985) Ensembles structuraux et principales phases de déformations panafricaines dans la zone mobile du nord Cameroun, région de Poli. Revue Sciences et Technique, Série Sciences de la Terre, IRD, l 1–2:9–23

    Google Scholar 

  • El Tohamy AM (2019) Mineralogy and geochemistry of the Sikait U-Au-bearing lamprophyre dyke, South Eastern Desert, Egypt. Arab J Geosci 12(7):1–17

    Article  Google Scholar 

  • Floyd PA, Winchester JA (1975) Magma type and tectonic setting discrimination using immobile elements. Earth Planet Sci Lett 27(2):211–218

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48(1–4):237–262

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous Rocks—a classification and glossary of terms. Recommendations of the IUGS Sub-Commission on the Systematics of Igneous Rocks, 2nd edition, Cambridge University Press, Cambridge, 236 pp

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichec VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association commission on new minerals and mineral names. Eur J Mineral 9(3):623–651

    Article  Google Scholar 

  • LeBas MJ (1962) The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am J Sci 260(4):267–288

    Article  Google Scholar 

  • Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series. Earth Planet Sci Lett 59:139–154

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Miyashiro A (1978) Nature of alkali volcanic rock series. Contrib Miner Petrol 66:91–104

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Ngako V, Njonfang E, Tongwa AT, Affaton P, Nnange JM (2006) The North-South Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroon: complex interaction between hotspots and Precambrian faults. J Afr Earth Sc 45:241–256

    Article  Google Scholar 

  • Nkouandou OF, Fagny Mefire A, Iancu GO, Bardintzeff JM (2015) Petrology and geochemistry of doleritic dyke of Likok (Cameroon, Central Africa). Carpathian J Earth Environ Sci 10(1):121–132

    Google Scholar 

  • Nkouandou OF, Bardintzeff JM, Dourwe Dogsaye P, Fagny Mefire A (2016) Geochemistry and petrogenesis of mafic doleritic dykes at Mbaoussi (Adamawa plateau, Cameroon, Central Africa). J Geogr Environ Earth Sci Int 8(1):1–18.https://journaljgeesi.com/index.php/JGEESI/article/view/10517/18925

  • Nomo NE, Tchameni R, Vanderhaeghe OFS, Fenguye S, Barbey P, Tekoum L, FossoTchunte PM, Eglinger A, SahaFouotsa NA (2017) Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroon). J Afr Earth Sc 131:251–271

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Sengupta P, Ray A, Pramanik S (2014) Mineralogical and chemical characteristics of newer dolerite dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting. J Earth Syst Sci 123(4):887–904

    Article  Google Scholar 

  • Shaw JE, Baker JA, Menzies MA, Thirlwall MF, Ibrahim KM (2003) Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): a mixing lithosphere-asthenosphere source activated by lithospheric extension. J Petrol 44:1657–1679

    Article  Google Scholar 

  • Srivastava RK (2011) Dyke Swarms: keys for geodynamic interpretation. Springer, Berlin

    Book  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42:313–345

    Article  Google Scholar 

  • Tarney J (1992) Geochemistry and significance of mafic dyke swarms in the Proterozoic. In: Condie KC (ed) Proterozoic crustal evolution. Elsevier, Amsterdam, pp 151–179

    Chapter  Google Scholar 

  • Toteu SF (1990) Geochemical characterization of the main petrographical and structural units of Northern Cameroon: implications for Pan-African evolution. J Afr Earth Sc 10(4):615–624

    Article  Google Scholar 

  • Toteu SF, Michard A, Bertrand JM, Rocci G. (1987) U/Pb dating of Precambrian rocks from northern Cameroon, orogenic evolution and chronology of the Pan-African belt of Central Africa. Precambr Res 37(1):71–87

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa. Precambr Res 108(1–2):45–73

    Article  Google Scholar 

  • Toteu SF, Penaye J, Poudjom Djomani Y (2004) Geodynamic evolution of the Pan-African Belt in Central Africa with special reference to Cameroon. Can J Earth Sci 41(1):73–85

    Article  Google Scholar 

  • Toteu SF, Penaye J, Deloule E, Van Schmus WR, Tchameni R (2006) Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). J Afr Earth Sc 44:428–442

    Article  Google Scholar 

  • Vicat JP, Pouclet A, Nkoumbou C, Mouangué AS (1997) Le volcanisme fissural néoprotérozoïque des séries du Dja inférieur, de Yokadouma (Cameroun) et de Nola (RCA): Signification géotectonique. Comptes Rendus de l’Académie des Sciences, Paris 325 (9):671–677

  • Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the Basin and Range, SW USA. J Geophys Res 107 (B1), 2017, ECV 5–1:5–21

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20(4):325–343

    Article  Google Scholar 

  • Worthing MA (2005) Petrology and geochronology of a Neoproterozoic dyke swarm from Marbat, South Oman. J Afr Earth Sc 41:248–265

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

Authors greatly thank the “Agence Universitaire de la Francophonie (AUF)” through the BAGL (Bureau Afrique Centrale et des Grands Lacs) for financial support of Le Projet de soutien aux équipes de recherche 2012/2013 (No 51110SU201) for supplement analyses. This paper is part of MMA thesis. “Laboratoire GEOPS” of the University Paris-Saclay is thanked for financial support of thin sections and electron microprobe analyses. B. Bonin is warmly thanked for his fruitful remarks. Two anonymous reviewers helped us to improve this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bardintzeff.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atour, M.M., Bardintzeff, J.M., Mefire, A.F. et al. Petrology and geochemical framework of dolerites dykes of Temté, North Cameroon, Central Africa. Acta Geochim 40, 287–299 (2021). https://doi.org/10.1007/s11631-020-00432-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-020-00432-4

Keywords

  • Dolerite
  • Dyke
  • Temté
  • Poli
  • Cameroon
  • Central Pan-African Fold Belt