Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria)

Abstract

The agriculture in Biskra, southeastern Algeria, is based on traditional practices and characterized by small irrigated fields. In the last decades, the increasing demand in water as well as the scarcity of rainfall has forced many farmers to use groundwater of low quality to maintain the profitability of their crops. Unfortunately, this practice seems to be the main harmful factor for soil quality in the region since it is responsible for the salinization of the irrigated areas. Aiming to assess the impact of this phenomenon, the soils of the irrigated perimeter of El Ghrous—a representative rural community located in the west of Biskra—have been analyzed. A set of 82 soil samples was collected from top and subsoil (0–15 and 15–35 cm respectively), on which the following physicochemical analyzes were performed: Ca2+, Mg2+, K+, Na+, Cl, SO42−, HCO3, NO3, pH, electrical conductivity (EC) and sodium adsorption ratio. A Principal Component Analysis was performed to individuate the geochemical processes that influenced significantly the evolution of soil salinity and its pathways. The results showed a calcium sulfate (CaSO4) facies with a high risk of salinity and a low to medium risk of alkalinity. The calcite residual alkalinity and generalized residual alkalinity decreased as the solutions became more concentrated. Most of the samples were oversaturated in carbonate minerals (aragonite, calcite, and dolomite) and undersaturated in evaporitic minerals (anhydrite, gypsum, and halite). Finally, two multiple linear regressions (using cations and anions as independent variables) have been proposed to quantify soil salinity. These equations, with an accuracy of 85 %, can represent a time and money-saving tool for managers and farmers to estimate the EC, in comparison to the traditional estimation methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abdennour MA, Douaoui A, Bennacer A, Manuel PF, Bradai A (2019a) Detection soil salinity as a consequence of land cover changes at El Ghrous (Algeria) irrigated area using satellite images. Agrobiologia 9:1458–1470

    Google Scholar 

  2. Abdennour MA, Douaoui A, Bradai A, Bennacer A, Pulido Fernández M (2019b) Application of kriging techniques for assessing the salinity of irrigated soils: the case of El Ghrous perimeter, Biskra, Algeria. Span J Soil Sci 9:105–124. https://doi.org/10.3232/SJSS.2019.V9.N2.04

    Article  Google Scholar 

  3. Abdennour MA et al (2020) Application of two different spatial interpolation approches to mapping the spatial variability of groundwater salinity and their effects on the quality of irrigated soils in biskra; SE Algeria. Ponte Int Sci Res J 76:29–50. https://doi.org/10.21506/j.ponte.2020.5.3

    Article  Google Scholar 

  4. Al-Droubi A (1976) Géochimie des sels et des solutions concentrées par évaporation. Modèle thermodynamique de simulation. Application aux sols salés du Tchad. vol 46. vol 1. Persée-Portail des revues scientifiques en SHS (in French)

  5. Apodaca LE, Bails JB, Smith CM (2007) Water quality in shallow alluvium aquifers. Upper Colorado river basin Colorado. J Am Water Resour Assoc 38:133–149

    Article  Google Scholar 

  6. Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra Plain, Turkey. Agric Water Manag 113:57–63

    Article  Google Scholar 

  7. Askri B, Al-Shanfari RA (2017) Assessment of hydro-chemical processes inducing the groundwater salinisation in coastal regions: case study of the Salalah Plain, Sultanate of Oman. In: Abdalla O, Kacimov A, Chen M, Al-Maktoumi A, Al-Hosni T, Clark I (eds) Water resources in arid areas: the way forward. Springer, Berlin, pp 351–368

    Google Scholar 

  8. Aubert G (1978) Méthodes d’analyses des sols. Centre national de documentation pédagogique, Centre régional de documentation pédagogique de Marseille, Marseille (in French)

    Google Scholar 

  9. Aubert G (1983) Observations sur les caractéristiques, la dénomination et la classification des sols salés ou salsodique. 4’ Cash Orostom Ser Ped Vol, pp 73–78 (in French)

  10. Ayadi Y et al (2018) Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environ Earth Sci 77:349

    Article  Google Scholar 

  11. Besser H et al (2017) GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab J Geosci 10:350. https://doi.org/10.1007/s12517-017-3148-0

    Article  Google Scholar 

  12. Boudibi S, Sakaa B, Zapata-Sierra A (2019) Groundwater quality assessment using GIS, ordinary kriging and WQI in an arid area. Ponte Int Sci Res J. https://doi.org/10.21506/j.ponte.2019.12.14

    Article  Google Scholar 

  13. Boufekane A, Saighi O (2016) Kriging method of study of the groundwater quality used for irrigation-case of Wadi Djendjen plain (North-East Algeria). J Fundam Appl Sci 8:346–362

    Article  Google Scholar 

  14. Bougherara A, Lacaze B (2009) Etude preliminaire des images Landsat et Alsat pour le suivi des mutations agraires des Ziban (extrême nord-est du Sahara algérien) de 1973 à 2007. Journées d’Animation Scientifique de l’AUF (in French)

  15. Bourrie G (2014) Swelling clays and salt-affected soils: demixing of Na/Ca clays as the rationale for discouraging the use of sodium adsorption ratio (SAR). Eurasian J Soil Sci 3:245–253

    Google Scholar 

  16. Bouteraa O, Mebarki A, Bouaicha F, Nouaceur Z, Laignel B (2019) Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim 38:796–814

    Article  Google Scholar 

  17. Bradaï A, Douaoui A (2013) Evolution géochimique de la solution des sols irrigués par les eaux à alcalinité résiduelle positive en conditions contrôlées. Application au Bas-Chéliff. Nat Technol 8:27–32 (in French)

    Google Scholar 

  18. Bradaï A, Douaoui A, Bettahar N, Yahiaoui I (2016) Improving the prediction accuracy of groundwater salinity mapping using indicator Kriging method. J Irrig Drain Eng 142:04016023

    Article  Google Scholar 

  19. Chebbah M (2016) A miocene-restricted platform of the Zibane zone (Saharan Atlas, Algeria), depositional sequences and paleogeographic reconstruction. Arab J Geosci 9:151. https://doi.org/10.1007/s12517-015-2132-9

    Article  Google Scholar 

  20. Cheverry C (1974) Contribution à l’étude pédologique des polders du lac Tchad: Dynamique des sels en milieu continental subaride dans des sédiments argileux et organiques (in French)

  21. Cheverry C, Bourrié G (2003) Salinisation of soils soil, fragile interface INRA Editions, Paris, pp 129–150

  22. Daoudi A, Lejars C (2016) From oasis agriculture to Saharan agriculture in the Ziban region. Actors of dynamism and factors of uncertainty/De l’agriculture oasienne a l’agriculture saharienne dans la region des Ziban en Algerie. Acteurs du dynamisme et facteurs d’incertitude. New Medit 15:45–53

    Google Scholar 

  23. Debieche TH (2002) Evolution de la qualité des eaux (salinité, azote et métaux lourds) sous l’effet de la pollution saline, agricole et industrielle: application à la basse plaine de la Seybouse Nord-Est algérien, Besançon (in French)

  24. Djamaï R, Fadel D, Laïfa A, Benslama M, Daoud Y, Vallès V (2011) Le concept d’alcalinité résiduelle et évolution géochimique des processus. Application aux sols salés du lac Fetzara (Nord-Est algérien). Synth Rev Sci Technol 23:90–98 (in French)

    Google Scholar 

  25. Douaoui AEK, Nicolas H, Walter C (2006) Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 134:217–230. https://doi.org/10.1016/j.geoderma.2005.10.009

    Article  Google Scholar 

  26. Drouiche A, Chaib W, Rezeg A, Bougherira N (2013) Risque de contamination des eaux souterraines par les nitrates en régions arides; cas d’Elghrous (Région des Ziban-Sud-Est Algérien). J Algér Rég Arid 12:65–75 (in French)

    Google Scholar 

  27. Durand J (1983) The irrigable soils agency. Cultural and Technical Cooperation. Academic Press France (in French)

  28. Durand MJ-H, Barbut MM (1938) Carte de reconnaissance des sols d’Algérie: Biskra. Service Géographique de l’Armée (in French)

  29. Emadodin I, Narita D, Bork HR (2012) Soil degradation and agricultural sustainability: an overview from Iran environment. Dev Sustain 14:611–625. https://doi.org/10.1007/s10668-012-9351-y

    Article  Google Scholar 

  30. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  31. FAO S (1985) Guidelines: Land Evaluation for Irrigated Agriculture FAO Soils Bulletin 55

  32. Franzen D (2007) Salt accumulation processes North Dakota state Univ, Fargo ND 58105

  33. Gorji T, Tanik A, Sertel E (2015) Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth Planet Sci 15:507–512

    Article  Google Scholar 

  34. Haj-Amor Z, Tóth T, Ibrahimi M-K, Bouri S (2017) Effects of excessive irrigation of date palm on soil salinization, shallow groundwater properties, and water use in a Saharan oasis. Environ Earth Sci 76:590. https://doi.org/10.1007/s12665-017-6935-8

    Article  Google Scholar 

  35. Hamed Y (2013) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arab J Geosci 6:697–710. https://doi.org/10.1007/s12517-011-0393-5

    Article  Google Scholar 

  36. Hamed Y, Dhahri F (2013) Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in Northwestern Tunisia. J Afr Earth Sci 83:10–24

    Article  Google Scholar 

  37. Hamed Y, Awad S, Sâad AB (2013a) Nitrate contamination in groundwater in the Sidi Aïch-Gafsa oases region, Southern Tunisia. Environ Earth Sci 70:2335–2348

    Article  Google Scholar 

  38. Hamed Y, Hadj R, Mokadem N (2013b) The continental intercalaire groundwater salinization in Southern Tunisia. In: International conference, pp 18–19

  39. Hamed Y, Ahmadi R, Hadji R, Mokadem N, Dhia HB, Ali W (2014a) Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators. Desalination Water Treat 52:1990–1996. https://doi.org/10.1080/19443994.2013.806221

    Article  Google Scholar 

  40. Hamed Y, Ahmadi R, Hadji R, Mokadem N, Dhia HB, Ali W (2014b) Groundwater evolution of the Continental Intercalaire aquifer of Southern Tunisia and a part of Southern Algeria: use of geochemical and isotopic indicators Desalination. Water Treat 52:1990–1996

    Article  Google Scholar 

  41. He Y, DeSutter TM, Hopkins DG, Wysocki DA, Clay DE (2015) Relationship between 1:5 soil/water and saturated paste extract sodium adsorption ratios by three extraction methods. Soil Sci Soc Am J 79:681–687

    Article  Google Scholar 

  42. Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, Western Iran. Environ Geol 52:1133–1149

    Article  Google Scholar 

  43. Koull N, Chehma A (2016) Soil characteristics and plant distribution in saline wetlands of Oued Righ, Northeastern Algeria. J Arid Land 8:948–959. https://doi.org/10.1007/s40333-016-0060-5

    Article  Google Scholar 

  44. Kuper M, Faysse N, Hammani A, Hartani T, Marlet S, Hamamouche MF, Ameur F (2016) Liberation or anarchy? The Janus nature of groundwater use on North Africa’s new irrigation frontiers. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A (eds) Integrated groundwater management. Concepts, approaches and challenges. Springer, Berlin, pp 583–615

    Google Scholar 

  45. Lotfi D, Yann L, Gerhard S, Mohamed H, Rajouene M (2018) Identifying the origin of groundwater salinisation in the Sidi El Hani basin (central-eastern Tunisia). J Afr Earth Sci 147:443–449

    Article  Google Scholar 

  46. Marlet S, Job J-O (2006) Processus et gestion de la salinité des sols (in French)

  47. Medjani F, Aissani B, Labar S, Djidel M, Ducrot D, Masse A, Hamilton CM-L (2017) Identifying saline wetlands in an arid desert climate using Landsat remote sensing imagery. Application on Ouargla Basin, Southeastern Algeria. Arab J Geosci 10:176

    Article  Google Scholar 

  48. Mohallel SA, Metwally SE, Gomaa EA, Fathy M, Sayed Alahl AA (2016) Assessment of scaling formation during solar desalination using PHREEQC modeling in El Gebail and El Qaa plain areas: southwest Sinai. Renew Wind Water Sol 3:4. https://doi.org/10.1186/s40807-016-0024-6

    Article  Google Scholar 

  49. Mostephaoui T, Bensaid R, Saker ML (2013) Localization and delimitation of the arid soils by remote sensing and in situ measurements in an arid area: case of Oued Djedi watershed, Biskra, Algeria. World Appl Sci J 24:370–382

    Google Scholar 

  50. Ncibi K et al (2020) A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin). Arab J Geosci 13:98. https://doi.org/10.1007/s12517-020-5112-7

    Article  Google Scholar 

  51. Nezli I, Achour S, Djabri L (2007) Approche géochimique des processus d’acquisition de la salinité des eaux de la nappe phréatique de la basse vallée de l’oued M’ya (Ouargla). Larhyss J (in French)

  52. Niñerola VB, Navarro-Pedreño J, Lucas IG, Pastor IM, Vidal MMJ (2017) Geostatistical assessment of soil salinity and cropping systems used as soil phytoremediation strategy. J Geochem Explor 174:53–58

    Article  Google Scholar 

  53. Ouedraogo I, Defourny P, Vanclooster M (2019) Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol J 27:1081–1098. https://doi.org/10.1007/s10040-018-1900-5

    Article  Google Scholar 

  54. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour Investig Rep 99:312

    Google Scholar 

  55. Parkhurst D, Appelo C (2005) PHREEQC-2 version 2.12: a hydrochemical transport model. US Geological Survey Central Region Research, USGS Water Resources Division

  56. Pazand K, Khosravi D, Ghaderi MR, Rezvanianzadeh MR (2018) Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: a case study of Ardestan basin in Central Iran. Groundw Sustain Dev 6:245–254

    Article  Google Scholar 

  57. Philippeau G, Philippeau G (1986) Comment interpréter les résultats d’une analyse en composantes principales? Institut technique des céréales et des fourrages (ITCF)

  58. Richards LA (1954) Diagnosis and improvement of saline and alkali soils vol 78. vol 2. LWW

  59. Risacher F, Fritz B (2009) Origin of salts and brine evolution of Bolivian and Chilean salars. Aquat Geochem 15:123–157

    Article  Google Scholar 

  60. Rodier J, Legube B, Merlet N (2009) L’Analyse de l’eau 9e édition Entièrement Mise À Jour Dunod Paris (in French)

  61. Sajil Kumar P (2020) Hydrogeochemical and multivariate statistical appraisal of pollution sources in the groundwater of the lower Bhavani River basin in Tamil Nadu. Geol Ecol Landsc 4:40–51

    Article  Google Scholar 

  62. Salem ZE-S, Osman OM (2017) Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt. Environ Sci Pollut Res 24:3675–3704. https://doi.org/10.1007/s11356-016-8056-4

    Article  Google Scholar 

  63. Semar A, Hartani T, Bachir H (2019) Soil and water salinity evaluation in new agriculture land under arid climate, the case of the Hassi Miloud area, Algeria. Euro-Mediterr J Environ Integr 4:40

    Article  Google Scholar 

  64. Wang JJ, Harrell DL, Bell PF (2004) Potassium buffering characteristics of three soils low in exchangeable potassium. Soil Sci Soc Am J 68:654–661

    Article  Google Scholar 

  65. Wang X, Yang J, Liu G, Yao R, Yu S (2015) Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agric Water Manag 149:44–54

    Article  Google Scholar 

  66. Xu Y, Pu L, Zhu M, Li J, Zhang M, Li P, Zhang J (2014) Spatial variation of soil salinity in the coastal reclamation area, eastern China. J Coast Res 30:411–417

    Article  Google Scholar 

  67. Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59:1461–1473

    Article  Google Scholar 

  68. Yin A, Zhang M, Gao C, Yang X, Xu Y, Wu P, Zhang H (2016) Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China. Environ Earth Sci 75:1281

    Article  Google Scholar 

  69. Zaidi FK, Al-Bassam AM, Kassem OM, Alfaifi HJ, Alhumidan SM (2017) Factors influencing the major ion chemistry in the Tihama coastal plain of southern Saudi Arabia: evidences from hydrochemical facies analyses and ionic relationships. Environ Earth Sci 76:472

    Article  Google Scholar 

  70. Zouggari H (1996) Modélisation des interactions ioniques dans les solutions concentrées d’électrolytes à partir de l’étude expérimentale de la solubilité des sulfates de sodium et de magnésium. Application aux saumures et aux sols salés en zone aride. Thèse de Doc. ENSA, Rennes France (in French)

Download references

Acknowledgements

The authors thank Narimen Bouzidi, Saliha Benaoun, Tarek Othman, Boudibi Samir, Toufik Aidat, Sarah Badache, Kamila Ghouali, and Samira Kendri for their help in the field and laboratory works. The first author would like to thank the Algerian Ministry of Science and High Education for the grant to make a predoctoral stay within the staff of the GeoEnvironmental Research Group of the University of Extremadura, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Abdennour.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdennour, M.A., Douaoui, A., Barrena, J. et al. Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria). Acta Geochim 40, 234–250 (2021). https://doi.org/10.1007/s11631-020-00426-2

Download citation

Keywords

  • Electrical conductivity
  • Cations
  • Anions
  • Soil quality
  • Saturation index
  • PHREEQC