Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon

Abstract

Iron ore deposits hosted by Precambrian banded iron formation (BIF) are the most important source of mineable iron. In Cameroon, they are located in the southern part of the country. This study reports the petrological and geochemical data of iron ores collected from a weathering profile in the Mamelles BIF deposit, SW Cameroon. The profile is composed of three levels which are from the bottom to the top: the saprock, the ferruginous horizon, and the loose horizon. Eight representative iron ore samples (rock fragments and loose clayey material) were collected along the profile and were subjected to petrographic and geochemical analyses. Their mineralogy consists of martite, goethite, quartz, and lesser amounts of hematite, magnetite, kaolinite, and halloysite. The presence of minerals such as kaolinite and goethite in the Mamelles iron ores suggests their supergene origin. Geochemically, the saprock is characterized by high iron content (70.25 wt% Fe2O3t), and low silica (26.38 wt% SiO2) and alumina (1.14 wt% Al2O3). The rock fragments collected from the ferruginous horizon display higher Fe2O3t (72–76.40 wt%), Al2O3 (2.80–5.43 wt%), and lower SiO2 (16.70–18.35 wt%) contents, suggesting the leaching of silica during the enrichment process. The loose clayey samples collected from both the ferruginous horizon and the upper loose horizon show lower iron and higher silica contents. When normalized to the underlying BIF saprock, both rock fragments and loose clayey ores display LREE enrichment, suggesting that they formed through supergene processes. Economically, most of the Mamelles iron ores are classified as medium-grade ores and a few display acceptable contents in contaminants. Overall, this petrological and geochemical study of the Mamelles iron ores revealed encouraging results. Given its strategic location near the deep seaport, the deposit should be investigated in more detail for its mining potential.

This is a preview of subscription content, access via your institution.

Fig. 1

Modified after Pouclet et al. (2007)

Fig. 2

Modified after Maurizot et al. (1986)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Anand RR, Paine M (2002) Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Aust J Earth Sci 49:3–162

    Article  Google Scholar 

  2. Angerer T, Hagemann SG, Danyushevsky LV (2012) Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Econ Geol 107:599–644

    Article  Google Scholar 

  3. Beukes NJ, Gutzmer J, Mukhopadhyay J (2002) The geology and genesis of high-grade hematite iron ore deposits. In: Proceedings iron ore 2002, AusIMM Perth, pp 23–29

  4. Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochim Cosmochim Acta 54:781–795

    Article  Google Scholar 

  5. Clout JMF, Simonson BM (2005) Precambrian iron formations and iron formation-hosted iron ore deposits. Econ Geol 100:643–679

    Google Scholar 

  6. Dalstra HJ, Rosière CA (2008) Structural controls on high-grade iron ores hosted by banded iron formation: a global perspective. Rev Econ Geol 15:73–106

    Google Scholar 

  7. Feybesse JL, Johan V, Maurizot P, Abessolo A (1986) Mise en évidence d’une nappe syn-métamorphe d’âge Eburnéen dans la partie Nord-Ouest du craton zaïrois, Sud-Ouest Cameroun. In: Les formations birrimiennes en Afrique de l’Ouest, journée scientifique, compte rendu de conférences, Occasional Publications-CIFEG, 1986/10, pp 105–111

  8. Ganno S, Ngnotue T, Kouankap Nono GD, Nzenti JP, Notsa FM (2015) Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment. Chem Erde 75:375–387

    Article  Google Scholar 

  9. Ganno S, Moudioh C, Nchare NA, Kouankap Nono GD, Nzenti JP (2016) Geochemical fingerprint and iron ore potential of the siliceous itabirite from palaeoproterozoic Nyong Series, Zambi area, Southwestern Cameroon. Resour Geol 66:71–80

    Article  Google Scholar 

  10. Ganno S, Njiosseu Tankeu EL, Kouankap Nono GD, Djoukouo SA, Moudioh C, Ngnotué T, Nzenti JP (2017) A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry. Ore Geol Rev 80:860–875

    Article  Google Scholar 

  11. Ganno S, Tsozué D, Kouankap Nono GD, Tchouatcha MS, Ngnotué T, Gamgne Takam R, Nzenti JP (2018) Geochemical constraints on the origin of banded iron formation-hosted iron ore from the archaean Ntem complex (Congo Craton) in the Meyomessi area, Southern Cameroon. Resour Geol 68:287–302

    Article  Google Scholar 

  12. Gross GA (1980) A classification of iron formations based on depositional environments. Can Mineral 18:215–222

    Google Scholar 

  13. Gutzmer J, Chisonga CB, Beukes NJ, Mukhopadhyay J (2008) The geochemistry of iron formation-hosted high-grade hematite-martite iron ores. Rev Econ Geol 15:157–183

    Google Scholar 

  14. Hagemann SG, Angerer T, Duuring P, Rosière CA, Figueiredo e Silva RC, Lobato L, Hensler AS, Walde DHG (2016) BIF-hosted iron mineral system: a review. Ore Geol Rev 76:317–359

    Article  Google Scholar 

  15. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915

    Article  Google Scholar 

  16. James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49:235–293

    Article  Google Scholar 

  17. Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am Mineral 90:1473–1499

    Article  Google Scholar 

  18. Lascelles DF, Tsiokos DS (2015) Microplaty hematite ore in the Yilgarn Province of Western Australia: the geology and genesis of the Wiluna West iron ore deposits. Ore Geol Rev 66:309–333

    Article  Google Scholar 

  19. Lasserre M, Soba D (1976) Age Libérien des granodiorites et des gneiss à pyroxènes du Cameroun Méridional. Bull BRGM 2:17–32

    Google Scholar 

  20. Lerouge C, Cocherie A, Toteu SF, Milesi JP, Penaye J, Tchameni R, Nsifa NE, Fanning CM (2006) SHRIMP U-Pb zircon dating for the Nyong series, South West Cameroon. J Afr Earth Sci 44:413–427

    Article  Google Scholar 

  21. Maurizot P, Abessolo A, Feybesse JL, Lecomte JP (1986) Etude de prospection minière du Sud-Ouest Cameroun : Synthèse des travaux de 1978 à 1985. Rapport BRGM 85, CMR 066

  22. Morris RC (1985) Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes; a conceptual model. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits 13. Elsevier Science Publications, Amsterdam, pp 73–235

    Google Scholar 

  23. Morris RC (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res 60:243–286

    Article  Google Scholar 

  24. Ndime EN, Ganno S, Soh Tamehe L, Nzenti JP (2018) Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. J Afr Earth Sci 148:80–98

    Article  Google Scholar 

  25. Nédélec A, Macaudière J, Nzenti JP, Barbey P (1986) Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun): implications pour la structure de la zone mobile panafricaine d’Afrique centrale au contact du craton du Congo. C R Acad Sci Paris Tome 303(Série II 1):75–80

    Google Scholar 

  26. Nelson BJ, Wood SA, Osiensky JL (2003) Partitioning of REE between solution and particulate matter in natural waters: a filtration study. J Solid State Chem 171:51–56

    Article  Google Scholar 

  27. Ntep Gweth P, Dupuy JJ, Matip O, Fombutu AF, Kalngui E (2003) Mineral resources of Cameroon. Sopecam, Yaoundé

    Google Scholar 

  28. Nzenti JP, Barbey P, Macaudière J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon). Precambrian Res 38:91–109

    Article  Google Scholar 

  29. Odigui ADH, Ndzana GM, Bekoa E, Abossolo-Angue AM, Bitom LD (2019) Morphological, geochemical and mineralogical studies of two soil profiles developed on the itabirites of Ntem Complex, southern Cameroon. J Afr Earth Sci 153:111–129

    Article  Google Scholar 

  30. Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounté J, Ganwa A, Minyem D, Nsifa EN (2004) The 2.1 Ga West central African belt in Cameroon: extension and evolution. J Afr Earth Sci 39:159–164

    Article  Google Scholar 

  31. Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa EN, Penaye J (2007) Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon), the charnockite-TTG link. Bulletin de la Société Géologique de France 178:3–14

    Article  Google Scholar 

  32. Ramanaidou ER (2009) Genesis of lateritic iron ore from banded iron-formation in the Capanema mine (Minas Gerais, Brazil). Aust J Earth Sci 56:605–620

    Article  Google Scholar 

  33. Ramanaidou ER, Wells MA (2014) Sedimentary hosted iron ores. Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 313–355

    Google Scholar 

  34. Soh Tamehe L, Tankwa MN, Chongtao W, Ganno S, Ngnotue T, Kouankap Nono GD, Simon SJ, Zhang J, Nzenti JP (2018) Geology and geochemical constrains on the origin and depositional setting of the Kpwa–Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geol Rev 95:620–638

    Article  Google Scholar 

  35. Soh Tamehe L, Chongtao W, Ganno S, Simon SJ, Kouankap Nono GD, Nzenti JP, Lemdjou YB, Lin NH (2019) Geology of the Gouap iron deposit, Congo craton, southern Cameroon: implications for iron ore exploration. Ore Geol Rev 107:1097–1128

    Article  Google Scholar 

  36. Spier CA, de Oliveira SMB, Rosière CA, Ardisson JD (2008) Mineralogy and trace element geochemistry of the high-grade iron ores of the Aguas Claras Mine and comparison with the Capao Xavier and Tamandua iron ore deposits, Quadrilatero Ferrifero, Brazil. Mineral Deposita 43:229–254

    Article  Google Scholar 

  37. Suchel JB (1987) Les climats du Cameroun. Thèse Doct ès-Lettres, Université de Bordeaux III

  38. Suh CE, Cabral AR, Shemang EM, Mbinkar L, Mboudou GGM (2008) Two contrasting iron deposits in the Precambrian mineral belt of Cameroon, West Africa. Explor Min Geol 17:197–207

    Article  Google Scholar 

  39. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–312

    Google Scholar 

  40. Teutsong T, Bontognali TRR, Ndjigui PD, Vrijmoed JC, Teagle D, Cooper M, Vance D (2017) Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: implications for its origin. Ore Geol Rev 80:267–288

    Article  Google Scholar 

  41. Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U–Pb and Sm–Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of Southern Cameroon. Precambrian Res 67:321–347

    Article  Google Scholar 

  42. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  43. Zhang J, Nozaki Y (1996) Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochim Cosmochim Acta 60:4631–4644

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and anonymous reviewers for their constructive comments which improved an earlier version of this paper. We also thank Remy Luechinger of ETH Zurich for the preparation of polished thin sections.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tessontsap Teutsong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teutsong, T., Temga, J.P., Enyegue, A.A. et al. Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon. Acta Geochim 40, 163–175 (2021). https://doi.org/10.1007/s11631-020-00421-7

Download citation

Keywords

  • Mamelles BIF
  • Medium-grade iron ore
  • Supergene origin
  • Nyong unit
  • Cameroon