Skip to main content
Log in

The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In this study, geochemical anomaly separation was carried out with methods based on the distribution model, which includes probability diagram (MPD), fractal (concentration-area technique), and U-statistic methods. The main objective is to evaluate the efficiency and accuracy of the methods in separation of anomalies on the shear zone gold mineralization. For this purpose, samples were taken from the secondary lithogeochemical environment (stream sediment samples) on the gold mineralization in Saqqez, NW of Iran. Interpretation of the histograms and diagrams showed that the MPD is capable of identifying two phases of mineralization. The fractal method could separate only one phase of change based on the fractal dimension with high concentration areas of the Au element. The spatial analysis showed two mixed subpopulations after U = 0 and another subpopulation with very high U values. The MPD analysis followed spatial analysis, which shows the detail of the variations. Six mineralized zones detected from local geochemical exploration results were used for validating the methods mentioned above. The MPD method was able to identify the anomalous areas higher than 90%, whereas the two other methods identified 60% (maximum) of the anomalous areas. The raw data without any estimation for the concentration was used by the MPD method using aminimum of calculations to determine the threshold values. Therefore, the MPD method is more robust than the other methods. The spatial analysis identified the detail soft hegeological and mineralization events that were affected in the study area. MPD is recommended as the best, and the spatial U-analysis is the next reliable method to be used. The fractal method could show more detail of the events and variations in the area with asymmetrical grid net and a higher density of sampling or at the detailed exploration stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bølviken B, Stokke P, Feder J, Jössang T (1992) The fractal nature of geochemical landscapes. J Geochem Explor 43:91–109

    Article  Google Scholar 

  • Cheng Q (1999) Spatial and scaling modelling for geochemical anomaly separation. J Geochem Explor 65:175–194

    Article  Google Scholar 

  • Cheng Q, Agterberg F, Ballantyne S (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130

    Article  Google Scholar 

  • Cheng Q, Agterberg F, Bonham-Carter G (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56:183–195

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9:43–52

    Article  Google Scholar 

  • Darabi-Golestan F, Ghavami-Riabi R, Khalokakaie R, Asadi-Haroni H, Seyedrahimi-Nyaragh M (2013) Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill. Arab J Geosci 6:4499–4509

    Article  Google Scholar 

  • Eilu P, Groves D (2001) Primary alteration and geochemical dispersion haloes of Archaean orogenic gold deposits in the Yilgarn Craton: the pre-weathering scenario. Geochem: Explor Environ, Anal 1:183–200

    Google Scholar 

  • Fleischhauer HL, Korte N (1990) Formulation of cleanup standards for trace elements with probability plots. Environ Manag 14:95–105

    Article  Google Scholar 

  • Geology Society of Iran (GSI) (2003) Geology map (1/100000) of Saquez

  • Ghannadpour SS, Hezarkhani A (2016) Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development. J Earth Syst Sci 125:387–401

    Article  Google Scholar 

  • Ghannadpour SS, Hezarkhani A, Maghsoudi A, Farahbakhsh E (2015) Assessment of prospective areas for providing the geochemical anomaly maps of lead and zinc in Parkam district, Kerman, Iran. Geosci J 19:431–440

    Article  Google Scholar 

  • Ghasemzadeh S, Maghsoudi A, Yousefi M, Mihalasky MJ (2019) Stream sediment geochemical data analysis for district-scale mineral exploration targeting: measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geol Rev 113:103115

    Article  Google Scholar 

  • Ghavami-Riabi R, Theart H, De Jager C (2008) Detection of concealed Cu–Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province, South Africa. J Geochem Explor 97:83–101

    Article  Google Scholar 

  • Ghavami-Riabi R, Seyedrahimi-Niaraq M, Khalokakaie R, Hazareh M (2010) U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. J Geochem Explor 104:27–33

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A (2018) Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. C R Geosci 350:180–191

    Article  Google Scholar 

  • Gonçalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modelling. J Geochem Explor 72:91–114

    Article  Google Scholar 

  • Govett G, Goodfellow W, Chapman R, Chork C (1975) Exploration geochemistry—distribution of elements and recognition of anomalies. J Int Assoc Math Geol 7:415–446

    Article  Google Scholar 

  • Haydari S (2004) Mineralogy, geochemistry and fabric of gold mineralization in ductile shear zone of Kravian area. M.Sc thesis, Tarbiyat Modares University-Iran

  • Hazen SW (1967) Some statistical techniques for analyzing mine and mineral-deposit sample and assay data. US Department of the Interior, Bureau of Mines

    Google Scholar 

  • Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77:167–175

    Article  Google Scholar 

  • Lima A, De Vivo B, Cicchella D, Cortini M, Albanese S (2003) Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region. Appl Geochem 18:1853–1865

    Article  Google Scholar 

  • Liu Y, Cheng Q, Carranza EJM, Zhou K (2019) Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Nat Resour Res 28:199–212

    Article  Google Scholar 

  • Madani N, Sadeghi B (2019) Capturing hidden geochemical anomalies in scarce data by fractal analysis and stochastic modeling. Nat Resour Res 28:833–847

    Article  Google Scholar 

  • Mollai H, Sharma R, Pe-Piper G (2009) Copper mineralization around the Ahar batholith, north of Ahar (NW Iran): evidence for fluid evolution and the origin of the skarn ore deposit. Ore Geol Rev 35:401–414

    Article  Google Scholar 

  • Rantitsch G (2004) Geochemical exploration in a mountainous area by statistical modeling of polypopulational data distributions. J Geochem Explor 82:79–95

    Article  Google Scholar 

  • Sinclair A (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Sinclair A (1991) A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J Geochem Explor 41:1–22

    Article  Google Scholar 

  • Swain SK, Roy P, Mukherjee B, Sawkar R (2019) Fractal dimension and its translation into a model of gold spatial proxy. Ore Geol Rev 110:102935

    Article  Google Scholar 

  • Yang X-M, Lentz DR, Chi G, Thorne KG (2008) Geochemical characteristics of gold-related granitoids in southwestern New Brunswick, Canada. Lithos 104:355–377

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015) Prediction–area (P–A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput Geosci 79:69–81

    Article  Google Scholar 

  • Yousefi M, Kreuzer OP, Nykänen V, Hronsky JM (2019) Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Ore Geol Rev 111:103005

    Article  Google Scholar 

  • Yusta I, Velasco F, Herrero J-M (1998) Anomaly threshold estimation and data normalization using EDA statistics: application to lithogeochemical exploration in Lower Cretaceous Zn–Pb carbonate-hosted deposits, northern Spain. Appl Geochem 13:421–439

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102:37–43

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Geological Society of Iran, especially the department of the gold project, for access to the analytical results. We also thank Dr. Hezareh and Dr. Ghazanfari, for their invaluable supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirmahdi Seyedrahimi-Niaraq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedrahimi-Niaraq, M., Hekmatnejad, A. The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochim 40, 78–88 (2021). https://doi.org/10.1007/s11631-020-00413-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-020-00413-7

Keywords

Navigation