Snowball Earth at low solar luminosity prevented by the ocean–atmosphere coupling

Abstract

The standard solar model proposes that the solar luminosity was 30% lower than the present level at 4.5 billion years ago (Ga). At low solar radiation, the climate model predicts that the Earth should have been completely covered by ice in the first 2 billion years, i.e. in the snowball Earth climate mode, when the atmospheric CO2 content was at the present level. However, snowball Earth condition is inconsistent with various sedimentological, paleontological, and geochemical evidence. Such controversy is collectively known as the ‘Faint Young Sun’ (FYS) paradox. Though various models have been proposed, the FYS paradox has not yet been resolved. In this study, we develop a model by considering the ocean–atmosphere coupling to show that high atmospheric CO2 level could be sustained at low seawater pH. The modeling result indicates that 0.1 bar atmospheric CO2 level that was required to prevent snowball Earth in early Archean could be sustained at seawater pH of 6.8–7.2. Although the absence of siderite in Archean paleosols has been used to argue against high atmospheric CO2 level, we suggest that siderite precipitation in paleosols was not controlled by the atmospheric CO2 level alone. Instead, siderite could precipitate in anoxic conditions with various amount of CO2 in the atmosphere, suggesting siderite cannot be used to reconstruct the atmospheric CO2 level. Therefore, the new model suggests that the snowball Earth condition could be prevented by the coupling of atmosphere and ocean systems, and thus the emergence of the ocean in the very beginning of Earth evolution might be the key to the subsequence evolution of habitability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714

    Google Scholar 

  2. Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198

    Google Scholar 

  3. Amundson R, Heinrich DH, Karl KT (2003) Soil formation, treatise on geochemistry. Pergamon, Oxford, pp 1–35

    Google Scholar 

  4. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science 292(5522):1701–1704

    Google Scholar 

  5. Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226(1):1–15

    Google Scholar 

  6. Bahcall JN, Pinsonneault MH, Basu S (2001) Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys J 555(2):990–1012

    Google Scholar 

  7. Bartley JK, Kah LC (2004) Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32:129–132

    Google Scholar 

  8. Battistuzzi FU, Feijão A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. https://doi.org/10.1186/1471-2148-1184-1144

    Article  Google Scholar 

  9. Bekker A, Holmden C, Beukes NJ, Kenig F, Eglinton B, Patterson WP (2008) Fractionation between inorganic and organic carbon during the Lomagundi (2.22–2.1 Ga) carbon isotope excursion. Earth Planet Sci Lett 271(1–4):278–291

    Google Scholar 

  10. Brasier AT, Martin AP, Melezhik VA, Prave AR, Condon DJ, Fallick AE (2013) Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Res 235:278–294

    Google Scholar 

  11. Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites? Precambrian Res 24:157–172

    Google Scholar 

  12. Byerly GR, Lower DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319(6053):489–491

    Google Scholar 

  13. Byrne B, Goldblatt C (2014) Radiative forcings for 28 potential Archean greenhouse gases. Clim Past 10(5):1779–1801

    Google Scholar 

  14. Domagal-Goldman SD, Meadows VS, Claire MW, Kasting JF (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11(5):419–441

    Google Scholar 

  15. Driese SG, Jirsa MA, Ren M, Brantley SL, Sheldon ND, Parker D, Schmitz M (2011) Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189(1–2):1–17

    Google Scholar 

  16. Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Res 39(4):247–302

    Google Scholar 

  17. Emmanuel S, Ague JJ (2007) Implications of present-day abiogenic methane fluxes for the early Archean atmosphere. Geophys Res Lett. https://doi.org/10.1029/2007gl030532

    Article  Google Scholar 

  18. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206

    Google Scholar 

  19. Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213(1–2):1–13

    Google Scholar 

  20. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  21. Feulner G (2012) The faint young sun problem. Rev Geophys. https://doi.org/10.1029/2011rg000375

    Article  Google Scholar 

  22. Goldblatt C, Zahnle KJ (2011) Clouds and the faint young Sun paradox. Clim Past 7(1):203–220

    Google Scholar 

  23. Gough DO (1981) Solar interior structure and luminosity variations. Solar Phys 74(1):21–34

    Google Scholar 

  24. Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. SEPM special publication No. 44, pp 79–106

  25. Grotzinger JP, James NP (2000) Precambrian carbonates: evolution and understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving precambrian world. Volume special publication no. 67. SEPM, Tulsa, pp 3–20

  26. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24(3):279–283

    Google Scholar 

  27. Hardie LA (2003) Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31(9):785–788

    Google Scholar 

  28. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet Sci Lett 268(3–4):476–486

    Google Scholar 

  29. Hartmann D (2015) Global physical climatology. Elsevier Science, Amsterdam, pp 498

    Google Scholar 

  30. Hesse R (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci Rev 26:253–284

    Google Scholar 

  31. Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428(6984):736–738

    Google Scholar 

  32. Higgins JA, Fischer WW, Schrag DP (2009) Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet Sci Lett 284(1–2):25–33

    Google Scholar 

  33. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Nature Publishing Group, Princeton University Press, pp 592

  34. Isson TT, Planavsky NJ (2018) Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560(7719):471–475

    Google Scholar 

  35. Jenkins GS (1993) A general-circulation model study of the effects of faster rotation rate, enhanced CO2 concentration, and reduced solar forcing—implications for the faint young sun paradox. J Geophys Res Atmos 98(D11):20803–20811

    Google Scholar 

  36. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57(3–4):137–161

    Google Scholar 

  37. Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res Oceans 87(NC4):3091–3098

    Google Scholar 

  38. Kasting JF (2001) The rise of atmospheric oxygen. Science 293:819–820

    Google Scholar 

  39. Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137(3–4):119–129

    Google Scholar 

  40. Kasting JF, Zahnle KJ, Walker JCG (1983) Photochemistry of methane in the Earth’s early atmosphere. Precambrian Res 20(2–4):121–148

    Google Scholar 

  41. Kasting JF, Pollack JB, Crisp D (1984) Effects of high CO2 levels on surface-temperature and atmospheric oxidation-state of the early Earth. J Atmos Chem 1(4):403–428

    Google Scholar 

  42. Kiehl JT, Dickinson RE (1987) A study of the radiative effects of enhanced atmopsheric CO2 and CH4 on early Earth surface temperatures. J Geophys Res Atmos 92(D3):2991–2998

    Google Scholar 

  43. Kress ME, McKay CP (2004) Formation of methane in comet impacts: implications for Earth, Mars, and Titan. Icarus 168(2):475–483

    Google Scholar 

  44. Kring DA, Cohen BA (2002) Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J Geophys Res Planets 107(E2):4-1

    Google Scholar 

  45. Kroner A (1985) Evolution of the Archean continental-crust. Ann Rev Earth Planet Sci 13:49–74

    Google Scholar 

  46. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198

    Google Scholar 

  47. Lazar C, McCollom TM, Manning CE (2012) Abiogenic methanogenesis during experimental komatiite serpentinization: implications for the evolution of the early Precambrian atmosphere. Chem Geol 326:102–112

    Google Scholar 

  48. Longdoz B, Francois LM (1997) The faint young sun climatic paradox: influence of the continental configuration and of the seasonal cycle on the climatic stability. Glob Planet Change 14(3–4):97–112

    Google Scholar 

  49. Lowe DR (1980) Archean sedimentation. Ann Rev Earth Planet Sci 8:145–167

    Google Scholar 

  50. Maliva RG, Knoll AH, Simonson BM (2005) Secular change in the Precambrian silica cycle: insights from chert petrology. Geol Soc Am Bull 117(7):835–845

    Google Scholar 

  51. McKay CP, Pollack JB, Courtin R (1991) The greenhouse and antigreenhouse effects on Titan. Science 253(5024):1118–1121

    Google Scholar 

  52. McKay CP, Lorenz RD, Lunine JI (1999) Analytic solutions for the antigreenhouse effect: Titan and the early Earth. Icarus 137(1):56–61

    Google Scholar 

  53. Miller SL, Urey HC, Oró J (1976) Origin of organic compounds on the primitive earth and in meteorites. J Mol Evol 9(1):59–72

    Google Scholar 

  54. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Google Scholar 

  55. Newman MJ, Rood RT (1977) Implications of solar evolution for Earth’s early atmosphere. Science 198(4321):1035–1037

    Google Scholar 

  56. Ohmoto H, Watanabe Y, Kumazawa K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago. Nature 429:395–399

    Google Scholar 

  57. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1):27–41

    Google Scholar 

  58. Pavlov AA, Brown LL, Kasting JF (2001) UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J Geophys Res Planets 106(E10):23267–23287

    Google Scholar 

  59. Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27(2):115–118

    Google Scholar 

  60. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(supplement 1):179–214

    Google Scholar 

  61. Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4(4):299–316

    Google Scholar 

  62. Roberson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9(4):313–320

    Google Scholar 

  63. Rondanelli R, Lindzen RS (2010) Can thin cirrus clouds in the tropics provide a solution to the faint young Sun paradox? J Geophys Res Atmos. https://doi.org/10.1029/2009jd012050

    Article  Google Scholar 

  64. Rondanelli R, Lindzen RS (2012) Comment on “Clouds and the Faint Young Sun Paradox” by Goldblatt and Zahnle (2011). Clim Past 8:701–703

    Google Scholar 

  65. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464(7289):744–747

    Google Scholar 

  66. Rudnick RL, Gao S (2014) 4.1—Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 1–51

    Google Scholar 

  67. Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378(6557):603–605

    Google Scholar 

  68. Sagan C, Mullen G (1972) Earth and mars: evolution of atmospheres and surface temperatures. Science 177(4043):52–56

    Google Scholar 

  69. Sami TT, James NP (1996) Synsedimentary cements as paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. J Sediment Res (Sect A Sediment Petrol Process) 66(1):209–222

    Google Scholar 

  70. Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–644

    Google Scholar 

  71. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B Biol Sci 361(1470):869–885

    Google Scholar 

  72. Schopf JW, Packer BM (1987) Ealry Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona group, Australia. Science 237:70–73

    Google Scholar 

  73. Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci 115(1):53–58

    Google Scholar 

  74. Scott HP, Hemley RJ, Mao HK, Herschbach DR, Fried LE, Howard WM, Bastea S (2004) Generation of methane in the Earth’s mantle: in situ high pressure-temperature measurements of carbonate reduction. Proc Natl Acad Sci 101(39):14023–14026

    Google Scholar 

  75. Shaviv NJ (2003) Toward a solution to the early faint Sun paradox: a lower cosmic ray flux from a stronger solar wind. J Geophys Res Space Phys. https://doi.org/10.1029/2003ja009997

    Article  Google Scholar 

  76. Sheldon ND (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Res 147:148–155

    Google Scholar 

  77. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410(6824):77

    Google Scholar 

  78. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge, pp 378

    Google Scholar 

  79. Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: A reestimate. Science 268(5209):375–379

    Google Scholar 

  80. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354

    Google Scholar 

  81. von Paris P, Rauer H, Grenfell JL, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early earth—CO(2) reconsidered. Planet Space Sci 56(9):1244–1259

    Google Scholar 

  82. Wacey D (2010) Stromatolites in the ~ 3400 Ma Strelley Pool Formation, Western Australia: examining biogenicity from the macro- to the nano-scale. Astrobiology 10:381

    Google Scholar 

  83. Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc B Biol Sci 361(1474):1857–1875

    Google Scholar 

  84. Zou L, Dong L, Ning M, Huang K, Peng Y, Qin S, Yuan H, Shen B (2019) Quantifying the carbon source of pedogenic calcite veins in weathered limestone: implications for the terrestrial carbon cycle. Acta Geochim 38:481–496

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Number 41772359).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Shen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Shen, B. Snowball Earth at low solar luminosity prevented by the ocean–atmosphere coupling. Acta Geochim 38, 775–784 (2019). https://doi.org/10.1007/s11631-019-00373-7

Download citation

Keywords

  • Faint Young Sun paradox
  • Carbon dioxide
  • Earth system
  • Siderite