Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt

  • O. A. Ebyan
  • H. A. Khamis
  • A. R. Baghdady
  • M. G. El-Feky
  • N. S. AbedEmail author
Original Article


The stream sediments of Wadi El Reddah (North Eastern Desert, Egypt) are geochemically and mineralogically investigated. Their content of radioactive and other heavy minerals is mainly represented by thorite, uranothorite, zircon, monazite, xenotime, columbite, fergusonite, and unknown rare earth elements (REEs) bearing minerals as well as cassiterite. Special emphasis on REE content of thorite, uranothorite, zircon and xenotime has been done to correlate them with the increase of uranium contents in these sediments. The key evidence for the presence low-temperature alteration processes includes the presence of some zircon crystals as remnants after complete dissolution of the overgrowth zircon in severe acidic environment, the sulphur content, biogenic minerals, occurrence of unusual minerals as cassiterite pore filling in zircon, variation in the REEs content from the surrounding granites to the stream sediments and the abundance of monazite in the surrounding granites. Most minerals are partially and/or completely altered, which indicated by the pseudomorphism of zircon by xenotime, thorite, and uranothorite.


Zircon Thorite Xenotime Radioactive minerals Low-temperature alteration Wadi El-Reddah 



Authors thank the Nuclear Materials Authority, Egypt for the facilities used in this work.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Abdalla HM, Helba H, Matsueda H (2009) Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt. Resour Geol 59(1):51–68CrossRefGoogle Scholar
  2. Ahrens LH, Cherry RD, Erlank AJ (1967) Observations on the Th–U relationship in zircons from granitic rocks and from kimberlites. Geochim Cosmochim Acta 51(2):379–2387Google Scholar
  3. Ali KA, Zoheir BA, Stern RJ, Martin A, Wagih JW, Bishara W (2016) Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian–Nubian Shield: implications for crustal evolution. Gondwana Res 32:181–192CrossRefGoogle Scholar
  4. Andres E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Comochim Acta 53:197–214CrossRefGoogle Scholar
  5. Armstrong P (1922) Zircon as ceriterian of igneous or sedimentary and metamorphic. Am J Sci 5(4):391–395CrossRefGoogle Scholar
  6. Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552CrossRefGoogle Scholar
  7. Bojanowski MJ, Ski BB, Clarkson E, Macdonald R, Marynowski L (2012) Low-temperature zircon growth related to hydrothermal alteration of siderite concretions in Mississippian shales, Scotland. Contrib Mineral Petrol 164:245–259CrossRefGoogle Scholar
  8. Braun J, Riotte J, Battacharya S, Violette A, Oliva P, Prunier J, Maréchal J, Ruiz L, Audry S, Subramanian S (2018) REY–Th–U dynamics in the critical zone: combined influence of reactive bedrock accessory minerals, authigenic phases and hydrological sorting (Mule Hole Watershed, South India). In press (accepted manuscript)Google Scholar
  9. Breiter K, Förster HJ, Skoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system. Czech Republic Lithos 88:15–34Google Scholar
  10. Cerny P, Meintzer RE, Andreson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421Google Scholar
  11. Chakoumakos BB, Murakami T, Lumpkin GR, Ewing RE (1987) Alpha-decay-inducedfracturing in zircon: the transition from the crystalline tometamict state. Science 236:1493–1600CrossRefGoogle Scholar
  12. Chen M, Wopenka B, El Goresy A (1996) High-pressure assemblage in shock melt vein in Peace River. Am Miner 81:902–912CrossRefGoogle Scholar
  13. Draz OM (2017) Mineralogy and geochemistry of stream sediments at Wadi Um Nafey area, North Eastern Desert, Egypt. Curr Sci Int 6(2):278–291Google Scholar
  14. Ebian OA, Khamis HA, Baghdady A, El-Feky MG, Abed NS (2018) Radioactivity and geochemistry of Wadi El Reddah stream sediments, North Eastern Desert, Egypt (in press) Google Scholar
  15. El Balakssy SS (2010) Zircon zonation from Egyptian coastal sediments as genetical indicator. The Egyptian Mineralogist, National Research Center, Cairo, pp 1–22Google Scholar
  16. El Kholy DM, Khamis HA, El Sandouly HL (2017) Geology and structural relationship between uranium occurrences in the northern part of Gabal Gattar, Northern Eastern Desert, Egypt. Nucl Mater Auth 7:64–84Google Scholar
  17. El-Feky MG (2011) Mineralogical, REE-geochemical and fluid inclusion studies on some uranium occurrences, Gabal Gattar, Northeastern Desert, Egypt. Chin J Geochem 30:430–443CrossRefGoogle Scholar
  18. El-Naby A (2009) High and low temperature alteration of uranium and thorium minerals Um Ara granites, south Eastern Desert, Egypt. Ore Geol Rev 35:436–446CrossRefGoogle Scholar
  19. El Rakaiby ML, Shalaby MH (1988) Geology of Gabal Gattar batholiths, central Eastern Desert, Egypt. Int J Remote Sens 13(12):2337–2347CrossRefGoogle Scholar
  20. El-Sayed MM, Shalaby MH, Hassanen MA (2003) Petrological and geochemical constraints on the tectonomagmatic evolution of the late Neoproterozoic granitoid suites in the Gattar area, north Eastern Desert, Egypt. Neues Jahrb Mineral Abh 179:1–142 (178, 239–275) Google Scholar
  21. Erlank AJ, Marchant JW, Cardoso MP, Ahrens LH (1978) Zirconium. In Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin, Part 11, 4, 40Google Scholar
  22. Esmail EM (2016) Mineralogical studies of the stream sediments in Khour Abalea Abu Rusheid area, South Eastern Desert, Egypt. Middle East J Appl Sci 6(4):867–877Google Scholar
  23. Farges F, Calas G (1991) Structural analysis of radiation damage in zircon and thorite: an X-ray absorption spectroscopic study. Am Miner 76:6–73Google Scholar
  24. Finch WI, Hanchar A (2003) Uranium provinces of North America: their definition, distribution and models. US Geol Surv Bull 2141:18Google Scholar
  25. Förster HJ (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55CrossRefGoogle Scholar
  26. Geisler T, Trachenko K, Ríos S, Dove MT, Salje EKH (2003a) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as nuclear waste form. J Phys Condens Matter 15:597–605CrossRefGoogle Scholar
  27. Geisler T, Rashwan AA, Rahn MKW, Poller UZ, Wingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508CrossRefGoogle Scholar
  28. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50CrossRefGoogle Scholar
  29. Grothaus B, Eppler D, Ehrlich R (1979) Depositional environment and structural implications of the Hammamat Formation, Egypt. Ann Geol Surv Egypt IX:564–590Google Scholar
  30. Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 58:4329–4359CrossRefGoogle Scholar
  31. Hay DC, Dempster TJ (2009) Zircon alteration, formation and preservation in sandstones. Sedimentology 56:2175–2191CrossRefGoogle Scholar
  32. Hay DC, Dempster TJ, Lee MR, Brown DJ (2010) Anatomy of a low temperature zircon outgrowth. Contrib Mineral Petrol 159:81–92CrossRefGoogle Scholar
  33. Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607CrossRefGoogle Scholar
  34. Helmy HM (1999) Mineralogy, fluid inclusions and geochemistry of the molybdenum–uranium–fluorite mineralizations, Gebel Gattar area, Eastern Desert, Egypt. In: International conference on geochemistry, Alexandria University, 15–16 Sept, pp 171–198Google Scholar
  35. Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocal for electron probe microanalysis. Chem Geol 254:133–147CrossRefGoogle Scholar
  36. Holland RD, Gottfried D (1955) The effects of nuclear radiation on the structure of zircon. Acta Crystallogr A 8:291–300CrossRefGoogle Scholar
  37. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In Hanchar J, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 53, 27–62Google Scholar
  38. Hussein AA, Ali MM, El Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volcanol Geotherm Res 14:187–198CrossRefGoogle Scholar
  39. Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508CrossRefGoogle Scholar
  40. Lumpkin GR, Chakoumakos BC (1988) Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. Am Miner 73:1405–1419Google Scholar
  41. Massonne HJ, Nasdala L (2003) Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzo feldspathic rock from the Erzgebirge, Germany. Am Mineral 88:883–889CrossRefGoogle Scholar
  42. Mourad N (2011) Mineralogical studies and mineral chemistry of some radioactive mineralizations in Gabal Gattar area, Northern Eastern Desert, Egypt. MSc Thesis, Ain Shams Univ, 169 pGoogle Scholar
  43. Moussa EMM, Stern RJ, Manton WI, Ali KA (2008) Shrimp zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt. Precambrian Res 160:341–356CrossRefGoogle Scholar
  44. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Miner 76:1510–1532Google Scholar
  45. Murali AV, Partharsarathy R, Mahadevan TM, Sankar Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments: a case study on Indian zircons. Geochim Cosmochim Acta 47:2047–2052CrossRefGoogle Scholar
  46. Nasdala L, Pidgeon RT, Wolf D (1996) Heterogeneous metamictization of zircon on a micro scale. Geochim Cosmochim Acta 60:1091–1097CrossRefGoogle Scholar
  47. Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron micro probetotals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650CrossRefGoogle Scholar
  48. Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Vaczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300CrossRefGoogle Scholar
  49. Noseck U, Havlova V, Suksi J, Brasser T, Cervinka R (2009) Geochemical behavior of uranium in sedimentary formations: insights from a natural analogue study. In: Proceedings of the 2009 12th international conference on environmental remediation and radioactive waste management, ICEM, Liverpool, UKGoogle Scholar
  50. Onstott TC, Miller ML, Ewing RC, Walsh D (1995) Recoil refinements: implications for the 40Ar/39Ar dating technique. Geochim Cosmochim Acta 59:1821–1834CrossRefGoogle Scholar
  51. Pidgeon RT, Nemchin AA, Kinny PD (2000) Fir-tree and nebulously zoned zircon from granulite facies rocks: evidence for zircon growth and interaction with metamorphic fluids. Goldschmidt’s Conf J Conf Abst 5:798Google Scholar
  52. Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 1. Zoning, alteration and exsolution in zircon. Mineral Petrol 39:21–37CrossRefGoogle Scholar
  53. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708CrossRefGoogle Scholar
  54. Putnis A (2009) Mineral replacement reactions. Rev Min Geochem 70:87–124CrossRefGoogle Scholar
  55. Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~ 250°C. Contrib Mineral Petrol 150:146–155CrossRefGoogle Scholar
  56. Sahama TG (1981) Growth structure in Ceylon zircon. Bull Mineral 104:89–94Google Scholar
  57. Seifert W, Förster H, Rhede D, Tietz O, Ulrych J (2012) Mineral inclusions in placer zircon from the Ohře (Eger) Graben: new data on “strontiopyrochlore”. Miner Petrol 106:39–53CrossRefGoogle Scholar
  58. Shalaby MH, Korany E, Mahdy NM (2015) On the petrogenesis and evolution of U-rich granite: insights from mineral chemistry studies of Gattar granite, North Eastern Desert, Egypt. Arab J Geosci 8:3565–3585CrossRefGoogle Scholar
  59. Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Mineral Petrol 160:909–930CrossRefGoogle Scholar
  60. Speer JA, Solberg TN, Becker SW (1981) Petrography of the Uranium-bearing minerals of the Liberty Hill pluton. South Carolina: phase assemblages and migration of uranium in granitoid rocks. Econ Geol 76:2162–2175CrossRefGoogle Scholar
  61. Su N, Yang S, Yue W (2017) Rare earth element chemistry indicates chemical alteration of zircons during the evolution of weathering profile. Acta Geochim 36(3):433–436CrossRefGoogle Scholar
  62. Surour AA, El-Feky MG (2003) Redistribution of U, Th and Hf in metamorphic zircon from the radioactive ortho-gneisses of Wadi Nugrus, Eastern Desert, Egypt. Egypt J Geol 47:113–128Google Scholar
  63. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002CrossRefGoogle Scholar
  64. Wang RC, Fontan F, Monchoux P (1992) Minéraux disséminés comme indicateurs du caractère pegmatitique du granite de Beauvoir, massif d’Échassieres, Allier, France. Can Mineral 30:763–770Google Scholar
  65. Wang RC, Fontan F, Xu SJ, Chen XM, Monchoux P (1996) Hafnian zircon from the apical part of the Suzhou granite, China. Can Mineral 34:100110Google Scholar
  66. Wang RC, Zhang GT, Lu JJ, Chen XM, Xu SJ, Wang DZ (2000) Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites. Eastern China Mineral Mag 64:867–877CrossRefGoogle Scholar
  67. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698CrossRefGoogle Scholar
  68. Weyer S, Musker C, Rehkamper M, Mezger K (2002) Determination of ultra-low Nb, Ta, Zr and Hf Concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector CP-MS. Chem Geol 18713(4):295–313CrossRefGoogle Scholar
  69. Žáček V, Škoda R, Sulovský P (2009) U–Th–rich zircon, thorite and allanite–(Ce) as main carriers of radioactivity in the highly radioactive ultrapotassic melasyenite porphyry from the Šumava Mts., Moldanubian Zone, Czech Republic. J Geosci 54:343–354Google Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geology Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Nuclear Materials Authority (NMA)El-Maadi, CairoEgypt

Personalised recommendations