Skip to main content
Log in

Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The stream sediments of Wadi El Reddah (North Eastern Desert, Egypt) are geochemically and mineralogically investigated. Their content of radioactive and other heavy minerals is mainly represented by thorite, uranothorite, zircon, monazite, xenotime, columbite, fergusonite, and unknown rare earth elements (REEs) bearing minerals as well as cassiterite. Special emphasis on REE content of thorite, uranothorite, zircon and xenotime has been done to correlate them with the increase of uranium contents in these sediments. The key evidence for the presence low-temperature alteration processes includes the presence of some zircon crystals as remnants after complete dissolution of the overgrowth zircon in severe acidic environment, the sulphur content, biogenic minerals, occurrence of unusual minerals as cassiterite pore filling in zircon, variation in the REEs content from the surrounding granites to the stream sediments and the abundance of monazite in the surrounding granites. Most minerals are partially and/or completely altered, which indicated by the pseudomorphism of zircon by xenotime, thorite, and uranothorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified after El Rakaiby and Shalaby (1988)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdalla HM, Helba H, Matsueda H (2009) Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt. Resour Geol 59(1):51–68

    Google Scholar 

  • Ahrens LH, Cherry RD, Erlank AJ (1967) Observations on the Th–U relationship in zircons from granitic rocks and from kimberlites. Geochim Cosmochim Acta 51(2):379–2387

    Google Scholar 

  • Ali KA, Zoheir BA, Stern RJ, Martin A, Wagih JW, Bishara W (2016) Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian–Nubian Shield: implications for crustal evolution. Gondwana Res 32:181–192

    Google Scholar 

  • Andres E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Comochim Acta 53:197–214

    Google Scholar 

  • Armstrong P (1922) Zircon as ceriterian of igneous or sedimentary and metamorphic. Am J Sci 5(4):391–395

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Google Scholar 

  • Bojanowski MJ, Ski BB, Clarkson E, Macdonald R, Marynowski L (2012) Low-temperature zircon growth related to hydrothermal alteration of siderite concretions in Mississippian shales, Scotland. Contrib Mineral Petrol 164:245–259

    Google Scholar 

  • Braun J, Riotte J, Battacharya S, Violette A, Oliva P, Prunier J, Maréchal J, Ruiz L, Audry S, Subramanian S (2018) REY–Th–U dynamics in the critical zone: combined influence of reactive bedrock accessory minerals, authigenic phases and hydrological sorting (Mule Hole Watershed, South India). In press (accepted manuscript)

  • Breiter K, Förster HJ, Skoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system. Czech Republic Lithos 88:15–34

    Google Scholar 

  • Cerny P, Meintzer RE, Andreson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Chakoumakos BB, Murakami T, Lumpkin GR, Ewing RE (1987) Alpha-decay-inducedfracturing in zircon: the transition from the crystalline tometamict state. Science 236:1493–1600

    Google Scholar 

  • Chen M, Wopenka B, El Goresy A (1996) High-pressure assemblage in shock melt vein in Peace River. Am Miner 81:902–912

    Google Scholar 

  • Draz OM (2017) Mineralogy and geochemistry of stream sediments at Wadi Um Nafey area, North Eastern Desert, Egypt. Curr Sci Int 6(2):278–291

    Google Scholar 

  • Ebian OA, Khamis HA, Baghdady A, El-Feky MG, Abed NS (2018) Radioactivity and geochemistry of Wadi El Reddah stream sediments, North Eastern Desert, Egypt (in press)

  • El Balakssy SS (2010) Zircon zonation from Egyptian coastal sediments as genetical indicator. The Egyptian Mineralogist, National Research Center, Cairo, pp 1–22

  • El Kholy DM, Khamis HA, El Sandouly HL (2017) Geology and structural relationship between uranium occurrences in the northern part of Gabal Gattar, Northern Eastern Desert, Egypt. Nucl Mater Auth 7:64–84

    Google Scholar 

  • El-Feky MG (2011) Mineralogical, REE-geochemical and fluid inclusion studies on some uranium occurrences, Gabal Gattar, Northeastern Desert, Egypt. Chin J Geochem 30:430–443

    Google Scholar 

  • El-Naby A (2009) High and low temperature alteration of uranium and thorium minerals Um Ara granites, south Eastern Desert, Egypt. Ore Geol Rev 35:436–446

    Google Scholar 

  • El Rakaiby ML, Shalaby MH (1988) Geology of Gabal Gattar batholiths, central Eastern Desert, Egypt. Int J Remote Sens 13(12):2337–2347

    Google Scholar 

  • El-Sayed MM, Shalaby MH, Hassanen MA (2003) Petrological and geochemical constraints on the tectonomagmatic evolution of the late Neoproterozoic granitoid suites in the Gattar area, north Eastern Desert, Egypt. Neues Jahrb Mineral Abh 179:1–142 (178, 239–275)

    Google Scholar 

  • Erlank AJ, Marchant JW, Cardoso MP, Ahrens LH (1978) Zirconium. In Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin, Part 11, 4, 40

  • Esmail EM (2016) Mineralogical studies of the stream sediments in Khour Abalea Abu Rusheid area, South Eastern Desert, Egypt. Middle East J Appl Sci 6(4):867–877

    Google Scholar 

  • Farges F, Calas G (1991) Structural analysis of radiation damage in zircon and thorite: an X-ray absorption spectroscopic study. Am Miner 76:6–73

    Google Scholar 

  • Finch WI, Hanchar A (2003) Uranium provinces of North America: their definition, distribution and models. US Geol Surv Bull 2141:18

    Google Scholar 

  • Förster HJ (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 88:35–55

    Google Scholar 

  • Geisler T, Trachenko K, Ríos S, Dove MT, Salje EKH (2003a) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as nuclear waste form. J Phys Condens Matter 15:597–605

    Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller UZ, Wingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Google Scholar 

  • Grothaus B, Eppler D, Ehrlich R (1979) Depositional environment and structural implications of the Hammamat Formation, Egypt. Ann Geol Surv Egypt IX:564–590

    Google Scholar 

  • Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 58:4329–4359

    Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon alteration, formation and preservation in sandstones. Sedimentology 56:2175–2191

    Google Scholar 

  • Hay DC, Dempster TJ, Lee MR, Brown DJ (2010) Anatomy of a low temperature zircon outgrowth. Contrib Mineral Petrol 159:81–92

    Google Scholar 

  • Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607

    Google Scholar 

  • Helmy HM (1999) Mineralogy, fluid inclusions and geochemistry of the molybdenum–uranium–fluorite mineralizations, Gebel Gattar area, Eastern Desert, Egypt. In: International conference on geochemistry, Alexandria University, 15–16 Sept, pp 171–198

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocal for electron probe microanalysis. Chem Geol 254:133–147

    Google Scholar 

  • Holland RD, Gottfried D (1955) The effects of nuclear radiation on the structure of zircon. Acta Crystallogr A 8:291–300

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In Hanchar J, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry 53, 27–62

  • Hussein AA, Ali MM, El Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volcanol Geotherm Res 14:187–198

    Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Google Scholar 

  • Lumpkin GR, Chakoumakos BC (1988) Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. Am Miner 73:1405–1419

    Google Scholar 

  • Massonne HJ, Nasdala L (2003) Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzo feldspathic rock from the Erzgebirge, Germany. Am Mineral 88:883–889

    Google Scholar 

  • Mourad N (2011) Mineralogical studies and mineral chemistry of some radioactive mineralizations in Gabal Gattar area, Northern Eastern Desert, Egypt. MSc Thesis, Ain Shams Univ, 169 p

  • Moussa EMM, Stern RJ, Manton WI, Ali KA (2008) Shrimp zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt. Precambrian Res 160:341–356

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Miner 76:1510–1532

    Google Scholar 

  • Murali AV, Partharsarathy R, Mahadevan TM, Sankar Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments: a case study on Indian zircons. Geochim Cosmochim Acta 47:2047–2052

    Google Scholar 

  • Nasdala L, Pidgeon RT, Wolf D (1996) Heterogeneous metamictization of zircon on a micro scale. Geochim Cosmochim Acta 60:1091–1097

    Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) The phenomenon of deficient electron micro probetotals in radiation-damaged and altered zircon. Geochim Cosmochim Acta 73:1637–1650

    Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Vaczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Google Scholar 

  • Noseck U, Havlova V, Suksi J, Brasser T, Cervinka R (2009) Geochemical behavior of uranium in sedimentary formations: insights from a natural analogue study. In: Proceedings of the 2009 12th international conference on environmental remediation and radioactive waste management, ICEM, Liverpool, UK

  • Onstott TC, Miller ML, Ewing RC, Walsh D (1995) Recoil refinements: implications for the 40Ar/39Ar dating technique. Geochim Cosmochim Acta 59:1821–1834

    Google Scholar 

  • Pidgeon RT, Nemchin AA, Kinny PD (2000) Fir-tree and nebulously zoned zircon from granulite facies rocks: evidence for zircon growth and interaction with metamorphic fluids. Goldschmidt’s Conf J Conf Abst 5:798

    Google Scholar 

  • Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 1. Zoning, alteration and exsolution in zircon. Mineral Petrol 39:21–37

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Min Geochem 70:87–124

    Google Scholar 

  • Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~ 250°C. Contrib Mineral Petrol 150:146–155

    Google Scholar 

  • Sahama TG (1981) Growth structure in Ceylon zircon. Bull Mineral 104:89–94

    Google Scholar 

  • Seifert W, Förster H, Rhede D, Tietz O, Ulrych J (2012) Mineral inclusions in placer zircon from the Ohře (Eger) Graben: new data on “strontiopyrochlore”. Miner Petrol 106:39–53

    Google Scholar 

  • Shalaby MH, Korany E, Mahdy NM (2015) On the petrogenesis and evolution of U-rich granite: insights from mineral chemistry studies of Gattar granite, North Eastern Desert, Egypt. Arab J Geosci 8:3565–3585

    Google Scholar 

  • Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Mineral Petrol 160:909–930

    Google Scholar 

  • Speer JA, Solberg TN, Becker SW (1981) Petrography of the Uranium-bearing minerals of the Liberty Hill pluton. South Carolina: phase assemblages and migration of uranium in granitoid rocks. Econ Geol 76:2162–2175

    Google Scholar 

  • Su N, Yang S, Yue W (2017) Rare earth element chemistry indicates chemical alteration of zircons during the evolution of weathering profile. Acta Geochim 36(3):433–436

    Google Scholar 

  • Surour AA, El-Feky MG (2003) Redistribution of U, Th and Hf in metamorphic zircon from the radioactive ortho-gneisses of Wadi Nugrus, Eastern Desert, Egypt. Egypt J Geol 47:113–128

    Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002

    Google Scholar 

  • Wang RC, Fontan F, Monchoux P (1992) Minéraux disséminés comme indicateurs du caractère pegmatitique du granite de Beauvoir, massif d’Échassieres, Allier, France. Can Mineral 30:763–770

    Google Scholar 

  • Wang RC, Fontan F, Xu SJ, Chen XM, Monchoux P (1996) Hafnian zircon from the apical part of the Suzhou granite, China. Can Mineral 34:100110

    Google Scholar 

  • Wang RC, Zhang GT, Lu JJ, Chen XM, Xu SJ, Wang DZ (2000) Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites. Eastern China Mineral Mag 64:867–877

    Google Scholar 

  • Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    Google Scholar 

  • Weyer S, Musker C, Rehkamper M, Mezger K (2002) Determination of ultra-low Nb, Ta, Zr and Hf Concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector CP-MS. Chem Geol 18713(4):295–313

    Google Scholar 

  • Žáček V, Škoda R, Sulovský P (2009) U–Th–rich zircon, thorite and allanite–(Ce) as main carriers of radioactivity in the highly radioactive ultrapotassic melasyenite porphyry from the Šumava Mts., Moldanubian Zone, Czech Republic. J Geosci 54:343–354

    Google Scholar 

Download references

Acknowledgements

Authors thank the Nuclear Materials Authority, Egypt for the facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Abed.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebyan, O.A., Khamis, H.A., Baghdady, A.R. et al. Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt. Acta Geochim 39, 96–115 (2020). https://doi.org/10.1007/s11631-019-00335-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00335-z

Keywords

Navigation