Skip to main content
Log in

Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element geochemical signatures in the Varzaghan district, NW Iran

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Varzaghan district at the northwestern margin of the Urumieh–Dokhtar magmatic arc, is considered a promising area for the exploration of porphyry Cu deposits in Iran. In this study we identified mono- and multi-element geochemical anomalies associated with Cu–Au–Mo–Bi mineralization in the central parts of the Varzaghan district by applying the concentration–area fractal method. After mono-element geochemical investigations, principal component analysis was applied to ten selected elements in order to acquire a multi-element geochemical signature based on the mineralization-related component. Quantitative comparisons of the obtained fractal-based populations were carried out in accordance with known Cu occurrences using Student’s t-values. Then, significant mono- and multi-element geochemical layers were separately combined with related geologic and structural layers to generate prospectivity models, using the fuzzy GAMMA approach. For quantitative evaluation of the effectiveness of different geochemical signatures in final prospectivity models, a prediction-area plot was adapted. The results show that the multi-element geochemical signature of principal component one (PC1) is more effective than mono-element layers in delimiting exploration targets related to porphyry Cu deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedi M, Torabi SA, Norouzi GH (2013) Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit. Boll di Geofis Teorica ed Appl 54(2):145–164

    Google Scholar 

  • Afzal P, Alghalandis YF, Khakzad A, Moarefvand P, Omran NR (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108(3):220–232

    Article  Google Scholar 

  • Afzal P, Harati H, Alghalandis YF, Yasrebi AB (2013) Application of spectrum–area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran. Chem Erde Geochem 73(4):533–543

    Article  Google Scholar 

  • Aghazadeh M, Hou Z, Badrzadeh Z, Zhou L (2015) Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology. Ore Geol Rev 70:385–406

    Article  Google Scholar 

  • Agterberg FP, Bonham-Carter GF (2005) Measuring the performance of mineral-potential maps. Nat Resour Res 14(1):1–17

    Article  Google Scholar 

  • Agterberg FP, Bonham-Carter GF, Wright DF (1990) Statistical pattern integration for mineral exploration. In: Computer applications in resource estimation. Elsevier, Geological Survey of Canada, Ottawa, pp. 1–2

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229(3):211–238

    Article  Google Scholar 

  • Arias M, Gumiel P, Sanderson DJ, Martin-Izard A (2011) A multifractal simulation model for the distribution of VMS deposits in the Spanish segment of the Iberian Pyrite Belt. Comput Geosci 37(12):1917–1927

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic Information Systems for geoscientists-modeling with GIS. Comput Methods Geosci 13:398

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. Stat Appl Earth Sci 89(9):171–183

    Google Scholar 

  • Carranza EJM (2004) Weights of evidence modeling of mineral potential: a case study using small number of prospects, Abra, Philippines. Nat Resour Res 13(3):173–187

    Article  Google Scholar 

  • Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. In: Handbook of Exploration and Environmental Geochemistry, vol 11. Elsevier, Amsterdam

  • Carranza EJM (2011) Geocomputation of mineral exploration targets. Comput Geosci 37(12):1907–1916

    Article  Google Scholar 

  • Carranza EJM, Hale M (1997) A catchment basin approach to the analysis of reconnaissance geochemical–geological data from Albay Province, Philippines. J Geochem Explor 60(2):157–171

    Article  Google Scholar 

  • Carranza EJM, Hale M (2002) Where are porphyry copper deposits spatially localized? a case study in Benguet province, Philippines. Nat Resour Res 11(1):45–59

    Article  Google Scholar 

  • Cheng Q (2001) Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies. Earth Sci J China Univ Geosci 26(2):161–166

    Google Scholar 

  • Cheng Q (2007) Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32(1):314–324

    Article  Google Scholar 

  • Cheng Q, Li Q (2002) A fractal concentration–area method for assigning a color palette for image representation. Comput Geosci 28(4):567–575

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51(2):109–130

    Article  Google Scholar 

  • Cheng Q, Agterberg FP, Bonham-Carter GF (1996) A spatial analysis method for geochemical anomaly separation. J Geochem Explor 56(3):183–195

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9(1):43–52

    Article  Google Scholar 

  • Cheng Q, Xia Q, Li W, Zhang S, Chen Z, Zuo R, Wang W (2010) Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 7(10):3019

    Article  Google Scholar 

  • Cheng Q, Bonham-Carter G, Wang W, Zhang S, Li W, Qinglin X (2011) A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Comput Geosci 37(5):662–669

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100(5):801–818

    Article  Google Scholar 

  • Davis CJ (2002) Statistics and data analysis geology, 3rd edn. Wiley, New York, pp 342–353

    Google Scholar 

  • Dilek Y, Imamverdiyev N, Altunkaynak Ş (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52(4–6):536–578

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A (2018a) Comparison of U-spatial statistics and C–A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran. CR Geosci 350(4):180–191

    Article  Google Scholar 

  • Ghezelbash R, Maghsoudi A (2018b) A hybrid AHP–VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran. Arab J Geosci 11(11):275

    Article  Google Scholar 

  • Goncalves MA, Mateus A, Oliveira V (2001) Geochemical anomaly separation by multifractal modelling. J Geochem Explor 72(2):91–114

    Article  Google Scholar 

  • Hashemi M, Afzal P (2013) Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran. Int Geol Rev 6(12):4785–4794

    Google Scholar 

  • Hengl T (2006) Finding the right pixel size. Comput Geosci 32(9):1283–1298

    Article  Google Scholar 

  • Hezarkhani A (2006) Petrology of the intrusive rocks within the Sungun porphyry copper deposit, Azerbaijan, Iran. J Asian Earth Sci 27(3):326–340

    Article  Google Scholar 

  • Jamali H, Dilek Y, Daliran F, Yaghubpur A, Mehrabi B (2010) Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. Int Geol Rev 52(4–6):608–630

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York, p 547

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20(1):141–151

    Article  Google Scholar 

  • Li C, Ma T, Shi J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77(2):167–175

    Article  Google Scholar 

  • Luz F, Mateus A, Matos JX, Gonçalves MA (2014) Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Nat Resour Res 23(2):195–215

    Article  Google Scholar 

  • Maghsoudi A, Rahmani M, Rashidi B (2005) Gold deposits and indications of Iran. ArianZamin Publication, Tehran (In Persian)

  • Maghsoudi A, Yazdi M, Mehrpartou M, Vosoghi Abideni M (2009) Geochemical zonation in Mirkoh Alimirza Area, Arasbaran Zone, NW Iran. In: 19th GoldschmidtTM conference. Davos, Switzerland

  • Maghsoudi A, Yazdi M, Mehrpartou M, Vosoughi M, Younesi S (2014) Porphyry Cu–Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. J Asian Earth Sci 79:932–941

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature (updated and augmented edition). Freeman, New York, p 495

    Google Scholar 

  • Mehrpartou M (1993) Geological map of Varzaghan, scale 1:1,000,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Muller J, Kylander M, Martinez-Cortizas A, Wüst RA, Weiss D, Blake K, Garcia-Sanchez R (2008) The use of principle component analyses in characterising trace and major elemental distribution in a 55 Kyr peat deposit in tropical Australia: implications to paleoclimate. Geochim Cosmochim Acta 72(2):449–463

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Ghezelbash R (2016) Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arab J Geosci 9:1–16

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M, Carranza EJM (2017) Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. J Afr Earth Sci 128:5–15

    Article  Google Scholar 

  • Pirajno F (2010) Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay-Sayan (Siberia). J Geodyn 50(3):325–346

    Article  Google Scholar 

  • Porwal A, Carranza EJM, Hale M (2003) Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat Resour Res 12(1):1–25

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3(2):129–149

    Article  Google Scholar 

  • Sinclair AJ (1976) Applications of probability graphs in mineral exploration (No. 4). Association of Exploration Geochemists, Rexdale

    Google Scholar 

  • Sinclair AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J Geochem Explor 41(1–2):1–22

    Article  Google Scholar 

  • Stanley CR, Sinclair AJ (1989) Comparison of probability plots and the gap statistic in the selection of thresholds for exploration geochemistry data. J Geochem Explor 32(1–3):355–357

    Article  Google Scholar 

  • Wang W, Zhao J, Cheng Q, Liu J (2012) Tectonic–geochemical exploration modeling for characterizing geo-anomalies in southeastern Yunnan district, China. J Geochem Explor 122:71–80

    Article  Google Scholar 

  • Wang W, Zhao J, Cheng Q (2014) Mapping of Fe mineralization–associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. J Geochem Explor 141:6–14

    Article  Google Scholar 

  • Xiao F, Chen J, Agterberg F, Wang C (2014) Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu–Mo deposits in Eastern Tianshan, China. J Geochem Explor 145:1–11

    Article  Google Scholar 

  • Yasrebi AB, Afzal P, Wetherelt A, Foster P, Esfahanipour R (2013) Correlation between geology and concentration–volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geol Carpath 64(2):153–163

    Article  Google Scholar 

  • Yousefi M, Carranza EJM (2015) Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput Geosci 83:72–79

    Article  Google Scholar 

  • Yousefi M, Kamkar-Rouhani A, Carranza EJM (2014) Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem Explor Environ Anal 14(1):45–58

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  • Zimmermann HJ, Zysno P (1980) Latent connectives in human decision making. Fuzzy Sets Syst 4:37–51

    Article  Google Scholar 

  • Zuo R (2011a) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26:S271–S273

    Article  Google Scholar 

  • Zuo R (2011b) Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111(1):13–22

    Article  Google Scholar 

  • Zuo R, Wang J (2016) Fractal/multifractal modeling of geochemical data: a review. J Geochem Explor 164:33–41

    Article  Google Scholar 

  • Zuo R, Cheng Q, Agterberg FP, Xia Q (2009) Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. J Geochem Explor 101(3):225–235

    Article  Google Scholar 

  • Zuo R, Zhang Z, Zhang D, Carranza EJM, Wang H (2015) Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geol Rev 71:502–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelbash, R., Maghsoudi, A. & Daviran, M. Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochim 38, 131–144 (2019). https://doi.org/10.1007/s11631-018-0289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0289-0

Keywords

Navigation