Skip to main content
Log in

Zinc isotope fractionation under vaporization processes and in aqueous solutions

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Equilibrium Zn isotope fractionation was investigated using first-principles quantum chemistry methods at the B3LYP/6-311G* level. The volume variable cluster model method was used to calculate isotope fractionation factors of sphalerite, smithsonite, calcite, anorthite, forsterite, and enstatite. The water-droplet method was used to calculate Zn isotope fractionation factors of Zn2+-bearing aqueous species; their reduced partition function ratio factors decreased in the order \(\left[ {{\text{Zn}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{6} } \right]^{2 + } > \left[ {{\text{ZnCl}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{5} } \right]^{ + } > \left[ {{\text{ZnCl}}_{2} \left( {{\text{H}}_{2} {\text{O}}} \right)_{4} } \right] > \left[ {{\text{ZnCl}}_{3} \left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } > {\text{ZnCl}}_{4} ]^{2 - }\). Gaseous ZnCl2 was also calculated for vaporization processes. Kinetic isotope fractionation of diffusional processes in a vacuum was directly calculated using formulas provided by Richter and co-workers. Our calculations show that in addition to the kinetic isotope effect of diffusional processes, equilibrium isotope fractionation also contributed nontrivially to observed Zn isotope fractionation of vaporization processes. The calculated net Zn isotope fractionation of vaporization processes was 7–7.5‰, with ZnCl2 as the gaseous species. This matches experimental observations of the range of Zn isotope distribution of lunar samples. Therefore, vaporization processes may be the cause of the large distribution of Zn isotope signals found on the Moon. However, we cannot further distinguish the origin of such vaporization processes; it might be due either to igneous rock melting in meteorite bombardments or to a giant impact event. Furthermore, isotope fractionation between Zn-bearing aqueous species and minerals that we have provided helps explain Zn isotope data in the fields of ore deposits and petrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albarède F (2004) The stable isotope geochemistry of copper and zinc. Rev Miner Geochem 55:409–427

    Article  Google Scholar 

  • Albarède F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–1233

    Article  Google Scholar 

  • Anbar A, Jarzecki A, Spjiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe (H2O) 2+6 and Fe (H2O) 2+6 : implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Article  Google Scholar 

  • Anderson AJ, Mayanovic RA, Bajt S (1995) Determination of the local structure and speciation of zinc in individual hypersaline fluid inclusions by micro-XAFS. Can Mineral 33:499–508

    Google Scholar 

  • Anderson AJ, Mayanovic RA, Bajt S (1998) A microbeam XAFS study of aqueous chlorozinc complexing to 430 degrees C in fluid inclusions from the Knaumuehle granitic pegmatite, Saxonian granulite massif, Germany. Can Mineral 36:511–524

    Google Scholar 

  • Bermin J, Vance D, Archer C, Statham P (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297

    Article  Google Scholar 

  • Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc 118:3676–3680

    Article  Google Scholar 

  • Bigeleisen J (1998) Second-order correction to the Bigeleisen–Mayer equation due to the nuclear field shift. Proc Natl Acad Sci 95:4808–4809

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261

    Article  Google Scholar 

  • Black JR, Kavner A, Schauble EA (2011) Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc. Geochim Cosmochim Acta 75:769–783

    Article  Google Scholar 

  • Blix R, Ubisch H, Wickman FE (1957) A search for variations in the relative abundance of the zinc isotopes in nature. Geochim Cosmochim Acta 11:162–164

    Article  Google Scholar 

  • Bol W, Gerrits G, van Panthaleon Eck C (1970) The hydration of divalent cations in aqueous solution. An X-ray investigation with isomorphous replacement. J Appl Crystallogr 3:486–492

    Article  Google Scholar 

  • Chang TL, Zhao MT, Li WJ, Wang J, Qian QY (2001) Absolute isotopic composition and atomic weight of zinc. Int J Mass Spectrom 208:113–118

    Article  Google Scholar 

  • Chapman S, Cowling T (1991) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

    Google Scholar 

  • Chou C-L, Boynton W, Sundberg L, Wasson J (1975) Volatiles on the surface of Apollo 15 green glass and trace-element distributions among Apollo 15 soils. Lunar Planet Sci Conf Proc 6:1701–1727

    Google Scholar 

  • Cloquet C, Carignan J, Lehmann MF, Vanhaecke F (2008) Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal Bioanal Chem 390:451–463

    Article  Google Scholar 

  • Dauphas N, Rouxel O (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrom Rev 25:515–550

    Article  Google Scholar 

  • Davis AM, Hashimoto A, Clayton RN, Mayeda TK (1990) Isotope mass fractionation during evaporation of Mg2SiO4. Nature 347:655–658

    Article  Google Scholar 

  • Driesner T, Seward T (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4–5 molal aqueous NaCl and KCl solutions to 400 °C. Geochim Cosmochim Acta 64:1773–1784

    Article  Google Scholar 

  • Frisch AE, Frisch MJ, Trucks GW (2003) Gaussian 03 user’s reference. Gaussian (Incorporated)

  • Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision A. 02, vol 270. Gaussian. Inc., Wallingford, p 271

    Google Scholar 

  • Fujii T, Albarède F (2012) Ab initio calculation of the Zn isotope effect in phosphates, citrates, and malates and applications to plants and soil. PLoS ONE 7:e30726

    Article  Google Scholar 

  • Fujii T, Moynier FDR, Uehara A, Abe M, Yin Q-Z, Nagai T, Yamana H (2009a) Mass-dependent and mass-independent isotope effects of zinc in a redox reaction. J Phys Chem A 113:12225–12232

    Article  Google Scholar 

  • Fujii T, Moynier F, Albarède F (2009b) The nuclear field shift effect in chemical exchange reactions. Chem Geol 267:139–156

    Article  Google Scholar 

  • Fujii T, Moynier F, Telouk P, Abe M (2010) Experimental and theoretical investigation of isotope fractionation of zinc between aqua, chloro, and macrocyclic complexes. J Phys Chem A 114:2543–2552

    Article  Google Scholar 

  • Fujii T, Moynier F, Pons M-L, Albarède F (2011) The origin of Zn isotope fractionation in sulfides. Geochim Cosmochim Acta 75:7632–7643

    Article  Google Scholar 

  • Gagnevin D, Boyce A, Barrie C, Menuge J, Blakeman R (2012) Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim Cosmochim Acta 88:183–198

    Article  Google Scholar 

  • Gibbs GV (1982) Molecules as models for bonding in silicates. Am Miner 67:421–450

    Google Scholar 

  • He HT, Liu Y (2015) Silicon isotope fractionation during the precipitation of quartz and the adsorption of H4SiO4(aq)on Fe(III)-oxyhydroxide surfaces. Chin J Geochem 34:459–468

    Article  Google Scholar 

  • He HT, Zhang S, Zhu C, Liu Y (2016) Equilibrium and kinetic Si isotope fractionation factors and their implications for Si isotope distributions in the Earth’s surface environments. Acta Geochim 35:15–24

    Article  Google Scholar 

  • Hehre WJ (1986) Ab initio molecular orbital theory. Acc Chem Res 9:399–406

    Article  Google Scholar 

  • Herzog GF, Moynier F, Albarède F, Berezhnoy AA (2009) Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt. Geochim Cosmochim Acta 73:5884–5904

    Article  Google Scholar 

  • Herzog GF, Alexander CMOD, Berger EL, Delaney JS, Glass BP (2010) Potassium isotope abundances in Australasian tektites and microtektites. Meteorit Planet Sci 43:1641–1657

    Article  Google Scholar 

  • Herzog GF, Albrecht A, Peixue MA, Fink D, Klein J, Middleton R, Bogard DD, Nyquist LE, Shih CY, Garrison DH (2011) Cosmic-ray exposure history of the Norton County enstatite achondrite. Meteorit Planet Sci 46:284–310

    Article  Google Scholar 

  • Hill PS, Schauble EA, Shahar A, Tonui E, Young ED (2009) Experimental studies of equilibrium iron isotope fractionation in ferric aquo–chloro complexes. Geochim Cosmochim Acta 73:2366–2381

    Article  Google Scholar 

  • Humayun M, Clayton RN (1995) Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim Cosmochim Acta 59:2131–2148

    Article  Google Scholar 

  • Jarzecki A, Anbar A, Spiro T (2004) DFT analysis of Fe (H2O)6 3+ and Fe (H2O)6 2+ structure and vibrations; implications for isotope fractionation. J Phys Chem A 108:2726–2732

    Article  Google Scholar 

  • John SG, Rouxel OJ, Craddock PR, Engwall AM, Boyle EA (2008) Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet Sci Lett 269:17–28

    Article  Google Scholar 

  • Kruh R, Standley C (1962) An X-ray diffraction study of aqueous zinc chloride solutions. Inorg Chem 1:941–943

    Article  Google Scholar 

  • Li XF, Liu Y (2010) First-principles study of Ge isotope fractionation during adsorption onto Fe(III)-oxyhydroxide surfaces. Chem Geol 278:15–22

    Article  Google Scholar 

  • Li X, Liu Y (2011) Equilibrium Se isotope fractionation parameters: a first-principles study. Earth Planet Sci Lett 304:113–120

    Article  Google Scholar 

  • Li X, Liu Y (2015) A theoretical model of isotopic fractionation by thermal diffusion and its implementation on silicate melts. Geochim Cosmochim Acta 154:18–27

    Article  Google Scholar 

  • Li X, Zhao H, Tang M, Liu Y (2009) Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications. Earth Planet Sci Lett 287:1–11

    Article  Google Scholar 

  • Liu Y, Tossell JA (2005) Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim Cosmochim Acta 69:3995–4006

    Article  Google Scholar 

  • Liu Y, Olsen AA, Rimstidt JD (2006) Mechanism for the dissolution of olivine series minerals in acidic solutions. Am Miner 91:455–458

    Article  Google Scholar 

  • Liu Q, Tossell JA, Liu Y (2010) On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim Cosmochim Acta 74:6965–6983

    Article  Google Scholar 

  • Liu X, Lu X, Wang R, Meijer EJ (2011) Understanding hydration of Zn2+ in hydrothermal fluids with ab initio molecular dynamics. Phys Chem Chem Phys 13:13305–13309

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Luck JM, Othman DB, Albarède F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69:5351–5363

    Article  Google Scholar 

  • Luck J, Ben Othman D, Zanda B, Albarède F (2006) Zn Cu isotopes in chondritic components. Geochim Cosmochim Acta Suppl 70:373

    Article  Google Scholar 

  • Magini M, Licheri G, Paschina G, Piccaluga G, Pinna G (1988) X-ray diffraction of ions in aqueous solutions: hydration and complex formation. CRC Press, Boca Raton

    Google Scholar 

  • Maréchal C, Albarède F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66:1499–1509

    Article  Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Article  Google Scholar 

  • Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J, Coles BJ (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187

    Article  Google Scholar 

  • Mayanovic R, Anderson A, Bassett W, Chou I (1999) XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell. J Synchrotron Radiat 6:195–197

    Article  Google Scholar 

  • Moynier F, Albarède F, Herzog GF (2006) Isotopic composition of zinc, copper, and iron in lunar samples. Geochim Cosmochim Acta 70:6103–6117

    Article  Google Scholar 

  • Moynier F, Blichert-Toft J, Telouk P, Luck J-M, Albarède F (2007) Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochim Cosmochim Acta 71:4365–4379

    Article  Google Scholar 

  • Moynier F, Pichat S, Pons M-L, Fike D, Balter V, Albarède F (2009) Isotopic fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130

    Article  Google Scholar 

  • Moynier F, Beck P, Yin Q-Z, Ferroir T, Barrat J-A, Paniello R, Telouk P, Gillet P (2010) Volatilization induced by impacts recorded in Zn isotope composition of ureilites. Chem Geol 276:374–379

    Article  Google Scholar 

  • Moynier F, Paniello RC, Gounelle M, Albarède F, Beck P, Podosek F, Zanda B (2011) Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes. Geochim Cosmochim Acta 75:297–307

    Article  Google Scholar 

  • Novak M, Sipkova A, Chrastny V, Stepanova M, Voldrichova P, Veselovsky F, Prechova E, Blaha V, Curik J, Farkas J (2016) Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: using soluble and insoluble particles in snow and rime. Environ Pollut 218:1135–1146

    Article  Google Scholar 

  • Oi T (2000) Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z Naturforsch A 55:623–628

    Article  Google Scholar 

  • Oi T, Yanase S (2001) Calculations of reduced partition function ratios of hydrated monoborate anion by the ab initio moleculaSr orbital theory. J Nucl Sci Technol 38:429–432

    Article  Google Scholar 

  • Otake T, Lasaga AC, Ohmoto H (2008) Ab initio calculations for equilibrium fractionations in multiple sulfur isotope systems. Chem Geol 249:357–376

    Article  Google Scholar 

  • Palme H, Larimer J, Lipschutz M (1988) Moderately volatile elements. Meteor Early Sol Syst 1:436–461

    Google Scholar 

  • Paniello RC, Day JMD, Moynier F (2012) Zinc isotopic evidence for the origin of the Moon. Nature 490:376–379

    Article  Google Scholar 

  • Parchment OG, Vincent MA, Hillier IH (1996) Speciation in aqueous zinc chloride. An ab initio hybrid microsolvation/continuum approach. J Phys Chem 100:9689–9693

    Article  Google Scholar 

  • Paschina G, Piccaluga G, Pinna G, Magini M (1983) Chloro-complexes formation in a ZnCl–CdCl aqueous solution: an X-ray diffraction study. J Chem Phys 78:5745

    Article  Google Scholar 

  • Pons ML, Fujii T, Rosing M, Quitté G, Télouk P, Albarède F (2013) A Zn isotope perspective on the rise of continents. Geobiology 11:201–214

    Article  Google Scholar 

  • Ponzevera E, Quétel CR, Berglund M, Taylor PDP, Evans P, Loss RD, Fortunato G (2006) Mass discrimination during MC-ICPMS isotopic ratio measurements: investigation by means of synthetic isotopic mixtures (IRMM-007 series) and application to the calibration of natural-like zinc materials (including IRMM-3702 and IRMM-651). J Am Soc Mass Spectrom 17:1412–1427

    Article  Google Scholar 

  • Richet P, Bottinga Y, Janoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Richter FM, Davis AM, Ebel DS, Hashimoto A (2002) Elemental and isotopic fractionation of type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim Cosmochim Acta 66:521–540

    Article  Google Scholar 

  • Richter FM, Janney PE, Mendybaev RA, Davis AM, Wadhwa M (2007) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim Cosmochim Acta 71:5544–5564

    Article  Google Scholar 

  • Richter FM, Dauphas N, Teng F-Z (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103

    Article  Google Scholar 

  • Rosman KJR (1972) A survey of the isotopic and elemental abundance of zinc. Geochim Cosmochim Acta 36:801–819

    Article  Google Scholar 

  • Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in B (OH)3(aq) and BOH4 (aq). J Am Chem Soc 129:2222–2223

    Article  Google Scholar 

  • Rustad JR, Zarzycki P (2008) Calculation of site-specific carbon-isotope fractionation in pedogenic oxide minerals. Proc Natl Acad Sci 105:10297–10301

    Article  Google Scholar 

  • Rustad JR, Nelmes SL, Jackson VE, Dixon DA (2008) Quantum-chemical calculations of carbon-isotope fractionation in CO2(g), aqueous carbonate species, and carbonate minerals. J Phys Chem A 112:542–555

    Article  Google Scholar 

  • Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+ (aq), Ca2+ (aq), and Fe2+ (aq) with carbonate minerals. Geochim Cosmochim Acta 74:6301–6323

    Article  Google Scholar 

  • Schauble E (2003) Modeling zinc isotope fractionations. Agu Fall Meet 1:0781

    Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Article  Google Scholar 

  • Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70:2510–2529

    Article  Google Scholar 

  • Seo JH, Lee SK, Lee I (2007) Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol 243:225–237

    Article  Google Scholar 

  • Tanimizu M, Asada Y, Hirata T (2002) Absolute isotopic composition and atomic weight of commercial zinc using inductively coupled plasma mass spectrometry. Anal Chem 74:5814

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tossell J (2005) Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochim Cosmochim Acta 69:2981–2993

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562:562–581

    Article  Google Scholar 

  • Vance D, Archer C, Bermin J, Kennaway G, Cox EJ, Statham PJ, Lohan MC, Ellwood MJ (2006) Zn isotopes as a new tracer of metal micronutrient usage in the oceans. Geochim Cosmochim Acta 70:A666

    Article  Google Scholar 

  • Wai CM, Wasson JT (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet Sci Lett 36:1–13

    Article  Google Scholar 

  • Weiss DJ, Rausch N, Mason TFD, Coles BJ, Wilkinson JJ, Ukonmaanaho L, Arnold T, Nieminen TM (2007) Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim Cosmochim Acta 71:3498–3517

    Article  Google Scholar 

  • Wilkinson J, Weiss D, Mason T, Coles B (2005) Zinc isotope variation in hydrothermal systems: preliminary evidence from the Irish Midlands ore field. Econ Geol 100:583–590

    Article  Google Scholar 

  • Young ED, Galy A (2004) The isotope geochemistry and cosmochemistry of magnesium. Rev Mineral Geochem 55:197–230

    Article  Google Scholar 

  • Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH) 4 . Geochim Cosmochim Acta 69:2753–2766

    Article  Google Scholar 

  • Zhu X, Guo Y, Williams R, O’nions R, Matthews A, Belshaw N, Canters G, De Waal E, Weser U, Burgess B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. and co-author are grateful for support from 973 Program Fund (No. 2014CB440904), Chinese National Science Fund Projects (Nos. 41530210, 41490635, 41403051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y. Zinc isotope fractionation under vaporization processes and in aqueous solutions. Acta Geochim 37, 663–675 (2018). https://doi.org/10.1007/s11631-018-0281-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0281-8

Keywords

Navigation