Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, NE China: products of recent melt/fluid-peridotite interaction

  • Shenghua Zhou
  • Songyue Yu
  • Ting Zhou
  • Jiangbo Lan
  • Jian Kang
  • Liemeng Chen
  • Junhao Hu
Original Article
  • 19 Downloads

Abstract

Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here, we present a combined elemental and Li isotopic study on variably metasomatised peridotite xenoliths entrained in the Cenozoic basalts from Shangzhi in Northeast (NE) China that provides insight into this issue. Li concentration (0.3–2.7 ppm) and δ7Li (mostly 2‰–6‰) in olivine from the Shangzhi peridotites are similar to the normal mantle values and show roughly negative correlations with the indices of melt extraction (such as modal olivine and whole rock MgO). These features are consistent with variable degrees of partial melting. In contrast, clinopyroxene from the Shangzhi xenoliths shows significant Li enrichment (0.9–6.1 ppm) and anomalously light δ7Li (− 13.8‰ to 7.7‰) relative to normal mantle values. Such features can be explained by Li diffusion from silicate melts or Li-rich fluids occurring over a very short time (several minutes to several hours). Moreover, the light Li isotopic compositions preserved in some bulk samples also indicate that these percolated melts/fluids have not had enough time to isotopically equilibrate with the bulk peridotite. We thus emphasize that Li isotopic fractionation in the Shangzhi mantle xenoliths is mainly related to Li diffusion from silicate melts or Li-rich fluids that took place shortly before or coincident with their entrainment into the host magmas.

Keywords

Mantle peridotite Li isotope Mantle metasomatism Northeastern China 

Notes

Acknowledgements

We thank Prof. Yi-Lin Xiao and Hai-Yang Liu from the University of Science and Technology of China and Ting Zhou from the Institute of Geochemistry, Chinese Academy of Sciences for their assistance in analysis of Li isotopes. This study was funded by the strategic priority research program (B) of the Chinese Academy of Sciences (XDB18000000), NSFC (41573009; 41373042, 41203031). Open research fund of the State Key Laboratory of Ore Deposit Geochemistry of China (SKLODG Grant # 201204). We thank three anonymous reviewers for their constructive reviews which greatly improved the quality of this manuscript.

References

  1. Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633CrossRefGoogle Scholar
  2. Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett 272:139–147CrossRefGoogle Scholar
  3. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  4. Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27CrossRefGoogle Scholar
  5. Aulbach S, Rudnick RL, McDonough WF (2008) Li–Sr–Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155:79–92CrossRefGoogle Scholar
  6. Basu AR, Wang J, Huang W, Xie G, Tatsumoto M (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth Planet Sci Lett 105:149–169CrossRefGoogle Scholar
  7. Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998) Behaviour of boron, beryllium and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141CrossRefGoogle Scholar
  8. Cabanes N, Mercier JCC (1988) Insight into the upper mantle beneath an active extensional zone: the spinel-peridotite xenoliths from San Quintin (Baja California, Mexico). Contrib Mineral Petrol 100:374–382CrossRefGoogle Scholar
  9. Chan LH, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau Volcano. Geochem Geophys Geosyst 4:337–349CrossRefGoogle Scholar
  10. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160CrossRefGoogle Scholar
  11. Chan LH, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201CrossRefGoogle Scholar
  12. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165CrossRefGoogle Scholar
  13. Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424CrossRefGoogle Scholar
  14. Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74:274–292CrossRefGoogle Scholar
  15. Eggins SM, Rudnick RL, Mcdonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP–MS study. Earth Planet Sci Lett 154:53–71CrossRefGoogle Scholar
  16. Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245CrossRefGoogle Scholar
  17. Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568CrossRefGoogle Scholar
  18. Fan Q, Hooper PR (1989) The mineral chemistry of ultramafic xenoliths of eastern China: implications for upper mantle composition and the paleogeotherms. J Petrol 30:1117–1158CrossRefGoogle Scholar
  19. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059CrossRefGoogle Scholar
  20. Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176CrossRefGoogle Scholar
  21. Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296CrossRefGoogle Scholar
  22. Gao Y, Casey JF (2012) Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2. Geostandards Geoanal Res 36:75–81CrossRefGoogle Scholar
  23. Gao Y, Snow JE (2011) Cooling-induced fractionation of mantle Li isotopes from the ultraslow-spreading Gakkel Ridge. Earth Planet Sci Lett 301:231–240CrossRefGoogle Scholar
  24. Halama R, John T, Herms P, Hauff F, Schenk V (2011) A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chem Geol 281:151–166CrossRefGoogle Scholar
  25. Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331CrossRefGoogle Scholar
  26. Ionov DA, O’Reilly SY, Genshaft YS, Kopylova MG (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol 125:375–392CrossRefGoogle Scholar
  27. Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310CrossRefGoogle Scholar
  28. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218CrossRefGoogle Scholar
  29. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res Solid Earth 95:2661–2678CrossRefGoogle Scholar
  30. Krienitz MS, Garbe Schönberg CD, Romer RL, Meixner A, Haase KM, Stroncik NA (2012) Lithium isotope variations in ocean island basalts—implications for the development of mantle heterogeneity. J Petrol 53:2333–2347CrossRefGoogle Scholar
  31. Lai YJ, Strandmann P, Dohmen R, Takazawa E, Elliott T (2015) The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 164:318–332CrossRefGoogle Scholar
  32. Lin J, Liu Y, Hu Z, Yang L, Chen K, Chen H, Zong K, Gao S (2016) Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method. J Anal At Spectrom 31:390–397CrossRefGoogle Scholar
  33. Liu JQ (1999) Chinese Volcanos. Science Press, Beijing (in Chinese) Google Scholar
  34. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339CrossRefGoogle Scholar
  35. Liu YJ, Li MW, Feng ZQ, Wen QB, Neubauer F, Liang CY (2016) A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res 43:123–148CrossRefGoogle Scholar
  36. Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751CrossRefGoogle Scholar
  37. Ma LF, Qiao XF, Min LR, Fan BX, Ding XZ (eds) (2002) Geology Maps of China, vol 348. Geology Press, Beijing (in Chinese) Google Scholar
  38. Magna T, Wiechert U, Grove TL, Halliday AN (2006) Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet Sci Lett 250:428–443CrossRefGoogle Scholar
  39. Magna T, Ionov DA, Oberli F, Wiechert U (2008) Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet Sci Lett 276:214–222CrossRefGoogle Scholar
  40. Marschall HR, Pogge von Strandmann PAE, Seitz HM, Elliott T, Niu YL (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580CrossRefGoogle Scholar
  41. Marschall HR, Wanless VD, Shimizu N, Strandmann P, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Acta 207:102–138CrossRefGoogle Scholar
  42. Mcdonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  43. Navon O, Stolper E (1987) Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. J Petrol 95:285–307Google Scholar
  44. Neumann ER, Wulff-pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary islands. J Petrol 38:1513–1539CrossRefGoogle Scholar
  45. Nishio Y, Nakai SI, Yamamoto J, Sumino H, Matsumoto T, Prikhod’Ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261CrossRefGoogle Scholar
  46. Niu YL (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074CrossRefGoogle Scholar
  47. Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICP-MS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255CrossRefGoogle Scholar
  48. O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–447CrossRefGoogle Scholar
  49. Penniston-Dorland S, Liu XM, Rudnick RL (2017) Lithium isotope geochemistry. Rev Mineral Geochem 82:165–217CrossRefGoogle Scholar
  50. Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate AB, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75:5247–5268CrossRefGoogle Scholar
  51. Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507CrossRefGoogle Scholar
  52. Richter FM, Davis AM, Depaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923CrossRefGoogle Scholar
  53. Richter F, Watson B, Chaussidon M, Mendybaev R, Dan R (2014) Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes. Geochim Cosmochim Acta 126:352–370CrossRefGoogle Scholar
  54. Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid–rock reaction. Earth Planet Sci Lett 256:278–293CrossRefGoogle Scholar
  55. Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741CrossRefGoogle Scholar
  56. Schuessler JA, Schoenberg R, Srsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:79–81CrossRefGoogle Scholar
  57. Seitz HM, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64CrossRefGoogle Scholar
  58. Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177CrossRefGoogle Scholar
  59. Simons KK, Harlow GE, Brueckner HK, Goldstein SL, Sorensen SS, Hemming NG, Langmuir CH (2010) Lithium isotopes in Guatemalan and Franciscan HP-LT rocks: insights into the role of sediment-derived fluids during subduction. Geochim Cosmochim Acta 74:3621–3641CrossRefGoogle Scholar
  60. Su BX, Zhang HF, Sakyi PA, Yang YH, Ying JF, Tang YJ, Qin KZ, Xiao Y, Zhao XM, Mao Q, Ma YG (2011) The origin of spongy texture in minerals of mantle xenoliths from the western Qinling central China. Contrib Mineral Petrol 161:465–482CrossRefGoogle Scholar
  61. Su BX, Zhang HF, Deloule E, Sakyi PA, Xiao Y, Tang YJ, Hu Y, Ying JF, Liu PP (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157CrossRefGoogle Scholar
  62. Su BX, Zhang HF, Deloule E, Vigier N, Hu Y, Ying JF, Liu PP (2014a) Distinguishing silicate and carbonatite mantle metasomatism by using lithium and its isotopes. Chem Geol 381:67–77CrossRefGoogle Scholar
  63. Su BX, Zhang HF, Deloule E, Vigier N, Sakyi PA (2014b) Lithium elemental and isotopic variations in rock-melt interaction. Chem Erde 74:705–713CrossRefGoogle Scholar
  64. Su BX, Zhou MF, Robinson PT (2016) Extremely large fractionation of Li isotopes in chromitite-bearing mantle sequence. Sci Rep 6:22370CrossRefGoogle Scholar
  65. Su BX, Chen C, Bai Y, Pang KN, Qin KZ, Sakyi PA (2017a) Lithium isotopic composition of Alaskan-type intrusion and its implication. Lithos 286–287:363–368CrossRefGoogle Scholar
  66. Su BX, Zhou XH, Sun Y, Ying JF, Sakyi PA (2017b) Carbonatite-metasomatism signatures hidden in silicate-metasomatized mantle xenoliths from NE China. Geo J 53:682–691CrossRefGoogle Scholar
  67. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345CrossRefGoogle Scholar
  68. Sun H, Gao Y, Xiao Y, Gu HO, Casey JF (2016) Lithium isotope fractionation during incongruent melting: constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China. Chem Geol 439:71–82CrossRefGoogle Scholar
  69. Tang YJ, Zhang HF, Ying JF (2007a) Review of the lithium isotope system as a geochemical tracer. Int Geol Rev 49:374–388CrossRefGoogle Scholar
  70. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007b) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt–rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341CrossRefGoogle Scholar
  71. Tang YJ, Zhang HF, Ying JF (2010) A brief review of isotopically light Li—a feature of the enriched mantle? Int Geol Rev 52:964–976CrossRefGoogle Scholar
  72. Tang YJ, Zhang HF, Nakamura E, Ying JF (2011) Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: constraints from the Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol 161:845–861CrossRefGoogle Scholar
  73. Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Xiao Y, Hu Y (2012) Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos 149:79–90CrossRefGoogle Scholar
  74. Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Santosh M, Xiao Y (2014) Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Sci Rep 4:4274CrossRefGoogle Scholar
  75. Tatsumoto M, Basu AR, Huang W, Wang J, Xie G (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128CrossRefGoogle Scholar
  76. Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tim Mountain pegmatite. Earth Planet Sci Litt 243:701–710CrossRefGoogle Scholar
  77. Teng FZ, McDonough WF, Rudnick RL, Wing BA (2007) Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: a case study from the Onawa contact aureole, Maine. Chem Geol 239:1–12CrossRefGoogle Scholar
  78. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem 55:153–195CrossRefGoogle Scholar
  79. Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910CrossRefGoogle Scholar
  80. Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238CrossRefGoogle Scholar
  81. Tomascak PB, Langmuir CH, Roux PJL, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637CrossRefGoogle Scholar
  82. Tomascak PB, Magna T, Dohmen R (2016) Advances in lithium isotope geochemistry. In: Hoefs J (ed) Advances in isotope geochemistry. http://dx.doi.org/10.1007/978-3-319-01430-2
  83. Vlastélic I, Staudacher T, Bachèlery P, Télouk P, Neuville D, Benbakkar M (2011) Lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem Geol 284:26–34Google Scholar
  84. Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace-elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134CrossRefGoogle Scholar
  85. Wittig N, Baker JA, Downes H (2007) U–Th–Pb and Lu–Hf isotopic constraints on the evolution of sub-continental lithospheric mantle, French Massif Central. Geochim Cosmochim Acta 71:1290–1311CrossRefGoogle Scholar
  86. Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120CrossRefGoogle Scholar
  87. Xiao Y, Zhang HF, Deloule E, Su BX, Tang YJ, Sakyi PA, Hu Y, Ying JF (2015) Large lithium isotopic variations in minerals from peridotite xenoliths from the eastern North China craton. J Geol 123:79–94CrossRefGoogle Scholar
  88. Xiao Y, Zhang HF, Su BX, Zhu B, Chen BB, Chen C, Sakyi PA (2017) Partial melting control of lithium concentrations and isotopes in the Cenozoic lithospheric mantle Jiande area, the Cathaysia block of SE China. Chem Geol 466:750–761CrossRefGoogle Scholar
  89. Xu YG, Menzies MA, Vroon P, Mercier JC, Lin C (1998) Texture–temperature–geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J Petrol 39:469–493CrossRefGoogle Scholar
  90. Xu YG, Menzies MA, Thirlwall MF, Huang XL, Liu Y, Chen XM (2003) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere–asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505CrossRefGoogle Scholar
  91. Xu R, Liu Y, Tong X, Hu Z, Zong K, Gao S (2013a) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123CrossRefGoogle Scholar
  92. Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB, Wang W (2013b) Spatial–temporal relationships of Mesozoic Volcanic Rock in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci 74:167–193CrossRefGoogle Scholar
  93. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317CrossRefGoogle Scholar
  94. Yu SY, Xu YG, Huang XL, Ma JL, Ge WC, Zhang HH, Qin XF (2009) Hf–Nd isotopic decoupling in continental mantle lithosphere beneath Northeast China: effects of pervasive mantle metasomatism. J Asian Earth Sci 35:554–570CrossRefGoogle Scholar
  95. Yu SY, Xu YG, Ma JL, Zheng YF, Kuang YS, Hong LB, Ge WC, Tong LX (2010) Remnants of oceanic lower crust in the subcontinental lithospheric mantle: trace element and Sr–Nd–O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth Planet Sci Lett 297:413–422CrossRefGoogle Scholar
  96. Zack T, Tomascak PB, Rudnick RL, Dalpé C, Mcdonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290CrossRefGoogle Scholar
  97. Zhang M, Suddaby P, O’Reilly SY, Norman M, Qiu J (2000) Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenolith evidence. Tectonophysics 328:131–156CrossRefGoogle Scholar
  98. Zhang HF, Deloule E, Tang YJ, Ying JF (2010) Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Mineral Petrol 160:261–277CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shenghua Zhou
    • 1
    • 2
  • Songyue Yu
    • 1
  • Ting Zhou
    • 1
  • Jiangbo Lan
    • 1
  • Jian Kang
    • 1
    • 2
  • Liemeng Chen
    • 1
  • Junhao Hu
    • 1
    • 2
  1. 1.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangPR China
  2. 2.University of Chinese Academy of SciencesBeijingPR China

Personalised recommendations