Skip to main content
Log in

Molecular simulation study on K+–Cl ion pair in geological fluids

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

This paper reports a classical molecular dynamics study of the potential of mean forces (PMFs), association constants, microstructures K+–Cl ion pair in supercritical fluids. The constrained MD method is used to derive the PMFs of K+–Cl ion pair from 673 to 1273 K in low-density water (0.10–0.60 g/cm3). The PMF results show that the contact ion-pair (CIP) state is the one most energetically favored for a K+–Cl ion pair. The association constants of the K+–Cl ion pair are calculated from the PMFs, indicating that the K+–Cl ion pair is thermodynamically stable. It gets more stable as T increases or water density decreases. The microstructures of the K+–Cl ion pair in the CIP and solvent-shared ion-pair states are characterized in detail. Moreover, we explore the structures and stabilities of the KCl–Au(I)/Cu(I) complexes by using quantum mechanical calculations. The results reveal that these complexes can remain stable for T up to 1273 K, which indicates that KCl may act as a ligand complexing ore-forming metals in hydrothermal fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balbuena PB, Johnston KP, Rossky PJ (1996) Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 1. Ion solvation. J Phys Chem 100(7):2706–2715

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  Google Scholar 

  • Cavallari M, Cavazzoni C, Ferrario M (2004) Structure of NaCl and KCl concentrated aqueous solutions by ab initio molecular dynamics. Mol Phys 102(9–10):959–966

    Article  Google Scholar 

  • Chialvo AA, Simonson JM (2003) Aqueous Na+Cl pair association from liquidlike to steamlike densities along near-critical isotherms. J Chem Phys 118(17):7921

    Article  Google Scholar 

  • Chiu Y-C, Fuoss RM (1968) Conductance of the alkali halides. XII. Sodium and potassium chlorides in water at 25. deg. J Phys Chem 72(12):4123–4129

    Article  Google Scholar 

  • Chowdhuri S, Chandra A (2001) Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. J Chem Phys 115(8):3732

    Article  Google Scholar 

  • Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B 113(19):6782–6791

    Article  Google Scholar 

  • Fuoss RM (1980) Conductimetric determination of thermodynamic pairing constants for symmetrical electrolytes. Proc Natl Acad Sci U S A 77(1):34–38

    Article  Google Scholar 

  • Gallo P, Corradini D, Rovere M (2011) Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys Chem Chem Phys 13(44):19814–19822

    Article  Google Scholar 

  • Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54(3):1703

    Article  Google Scholar 

  • Gujt J, Bester-Rogac M, Hribar-Lee B (2014) An investigation of ion-pairing of alkali metal halides in aqueous solutions using the electrical conductivity and the Monte Carlo computer simulation methods. J Mol Liq 190:34–41

    Article  Google Scholar 

  • Hefter GT, Salomon M (1996) Conductivities of KF and CsF in methanol at 25°C. J Solut Chem 25(6):541–553

    Article  Google Scholar 

  • Ho PC, Palmer DA (1997) Ion association of dilute aqueous potassium chloride and potassium hydroxide solutions to 600°C and 300 MPa determined by electrical conductance measurements. Geochim Cosmochim Acta 61(15):3027–3040

    Article  Google Scholar 

  • Hu J, Duan Z, Zhu C, Chou IM (2007) PVTx properties of the CO2–H2O and CO2–H2O–NaCl systems below 647 K: assessment of experimental data and thermodynamic models. Chem Geol 238(3–4):249–267

    Article  Google Scholar 

  • Ibuki K, Ueno M, Nakahara M (2000) Analysis of concentration dependence of electrical conductances for 1:1 electrolytes in sub- and supercritical water. J Phys Chem B 104(21):5139–5150

    Article  Google Scholar 

  • Justice M-C, Justice J-C (1976) Ionic interactions in solutions. I. The association concepts and the McMillan-Mayer theory. J Solut Chem 5(8):543–561

    Article  Google Scholar 

  • Keshri S, Mandal R, Tembe BL (2016) Solvation structures and dynamics of alkaline earth metal halides in supercritical water: a molecular dynamics study. Chem Phys 476:80–90

    Article  Google Scholar 

  • Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313

    Article  Google Scholar 

  • Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH (1998) Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C. J Phys Chem B 102(21):4193–4204

    Article  Google Scholar 

  • Liu W, Wood RH, Doren DJ (2003) Hydration free energy and potential of mean force for a model of the sodium chloride ion pair in supercritical water with ab initio solute–solvent interactions. J Chem Phys 118(6):2837

    Article  Google Scholar 

  • Liu X, Lu X, Wang R, Zhou H, Xu S (2011) Speciation of gold in hydrosulphide-rich ore-forming fluids: insights from first-principles molecular dynamics simulations. Geochim Cosmochim Acta 75(1):185–194

    Article  Google Scholar 

  • Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106(11):4585–4621

    Article  Google Scholar 

  • Mei Y, Sherman DM, Liu W, Brugger J (2013) Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids. Geochim Cosmochim Acta 102:45–64

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  Google Scholar 

  • Plugatyr A, Svishchev IM (2009) Accurate thermodynamic and dielectric equations of state for high-temperature simulated water. Fluid Phase Equilib 277(2):145–151

    Article  Google Scholar 

  • Pluhařová E, Marsalek O, Schmidt B, Jungwirth P (2013) Ab initio molecular dynamics approach to a quantitative description of ion pairing in water. J Phys Chem Lett 4(23):4177–4181

    Article  Google Scholar 

  • Seward TM, Williams-Jones AE, Migdisov AA (2014) The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. Treatise Geochem 13:29–57

    Article  Google Scholar 

  • Smith DE, Dang LX (1994) Computer-simulations of Nacl association in polarizable water. J Chem Phys 100(5):3757–3766

    Article  Google Scholar 

  • Stubbs JM (2016) Molecular simulations of supercritical fluid systems. J Supercrit Fluids 108:104–122

    Article  Google Scholar 

  • Timko J, Bucher D, Kuyucak S (2010) Dissociation of NaCl in water from ab initio molecular dynamics simulations. J Chem Phys 132(11):114510

    Article  Google Scholar 

  • Todorov IT, Smith W, Cheshire UK (2011) The DL POLY 4 user manual. STFC, STFC Daresbury Laboratory, Daresbury, Warrington, version, 4(0)

  • Tutolo BM, Kong X-Z, Seyfried WE, Saar MO (2014) Internal consistency in aqueous geochemical data revisited: applications to the aluminum system. Geochim Cosmochim Acta 133:216–234

    Article  Google Scholar 

  • Tutolo BM, Schaen AT, Saar MO, Seyfried WE (2015) Implications of the redissociation phenomenon for mineral-buffered fluids and aqueous species transport at elevated temperatures and pressures. Appl Geochem 55:119–127

    Article  Google Scholar 

  • VandeVondele J et al (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167(2):103–128

    Article  Google Scholar 

  • Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535

    Article  Google Scholar 

  • Yui K, Sakuma M, Funazukuri T (2010) Molecular dynamics simulation on ion-pair association of NaCl from ambient to supercritical water. Fluid Phase Equilib 297(2):227–235

    Article  Google Scholar 

  • Zajacz Z et al (2010) Alkali metals control the release of gold from volatile-rich magmas. Earth Planet Sci Lett 297(1–2):50–56

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA (2011) The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochim Cosmochim Acta 75(10):2811–2827

    Article  Google Scholar 

  • Zhang Z, Duan Z (2004) Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chem Phys 297(1–3):221–233

    Article  Google Scholar 

  • Zimmerman GH, Arcis H, Tremaine PR (2012) Limiting conductivities and ion association constants of aqueous NaCl under hydrothermal conditions: experimental data and correlations. J Chem Eng Data 57(9):2415–2429

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge National Science Foundation of China (Nos. 41222015, 41273074, 41425009, and 41572027), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 201228), Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University. We are grateful to the High Performance Computing Center of Nanjing University for allowing us to use the IBM Blade cluster system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiandong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Liu, X., Lu, X. et al. Molecular simulation study on K+–Cl ion pair in geological fluids. Acta Geochim 36, 1–8 (2017). https://doi.org/10.1007/s11631-016-0130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0130-6

Keywords

Navigation