Skip to main content
Log in

Geochemical and geochronological studies of the Aketas granite from Fuyun County, Xinjiang: the implications of the petrogenesis and tectonic setting

  • Original Article
  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

As the wall rock of the Aketas gold deposit, the Aketas granite is about 45 km away from Fuyun County, Xinjiang Province. The zircon weighted mean U–Pb age of the Aketas granite is 309.0 ± 4.7 Ma, indicating that the Aketas granite was emplaced during the late Carboniferous. The Aketas granite belongs to the High-K cal-calkaline series, with SiO2 content from 63.00 to 68.20 %, K2O content from 3.06 to 4.49 % and Na2O content from 4.14  to 6.02 %. The Alkaline Ratio (AR) of the Aketas granite is high, from 1.89 to 3.47, and is 2.95 on average. The Aketas granite has low ∑REE (92.42–122.73 ppm) and high ∑LREE/∑HREE ratios (6.54–11.88). For the trace elements, the Aketas granite is enriched in LILE (Rb, U, Th, K) and incompatible elements, and marked depleted in HFSE (Nb, Ta, P, Ti). The geochemical characteristics of the Aketas granite suggest that it is a typical I-type and volcanic arc granite, and that the crystallization of clinopyroxene and hornblende is notable during the magmatic evolution. In combination with the regional tectonic studies, we propose that the emplacement of the Aketas granite implies the Altai and East Junggar area was still dominated by a subduction system at ~309 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21:87–110

    Article  Google Scholar 

  • Bernard-Griffiths J, Fourcade S, Dupuy C (1991) Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazert (Moroco): crustal contamination processes and source characteristics. Earth Planet Sci Lett 103:190–199

    Article  Google Scholar 

  • Briggs SM, Yin A, Manning CE, Chen ZL, Wang XF, Grove M (2007) Late Paleozoic tectonic history of the Ertix fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geol Soc Am Bull 119:944–960

    Article  Google Scholar 

  • Buslov MM, Watanabe T, Fujiwara Y, Iwata K, Smirnova LV, Yu Safonova I, Semakov NN, Kiryanova AP (2004) Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J Asian Earth Sci 23:655–671

    Article  Google Scholar 

  • Cai K, Sun M, Yuan C, Long X, Xiao W (2011a) Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russ Geol Geophys 52:1619–1633

    Article  Google Scholar 

  • Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X, Wu F (2011b) Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos 127:261–281

    Article  Google Scholar 

  • Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X, Wu F (2011c) Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids. J Asian Earth Sci 42:949–968

    Article  Google Scholar 

  • Chen JF (2011) Geochemistry of the Part of the Plate of the Altai No. 3 Pegmatite and its formation and evolution. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese)

  • Chen B, Jahn BM (2004) Gensis of post-collisional granitoids an basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. J Asian Earth Sci 23:691–703

    Article  Google Scholar 

  • Chen GW, Deng T, Liu R, Xia H, Liu Q (2015) Geochemistry of bimodal volcanic rocks in Permian Taerdetao formation in Awulale area of western Tianshan, Xinjiang. Acta Petrol Sin 31(1):105–118 (in Chinese with English abstract)

    Google Scholar 

  • Collins WJ, Beams SD, White AJK (1982) Nature and origin of A type granites with particular reference to southeasten Australia. Contrib Mineral Petrol 80:189–200

    Article  Google Scholar 

  • Dong LH, Qu X, Zhao TY, Xu SQ, Zhou RH, Wang KZ, Zhu ZX (2012) Magmatic sequence of early Palaeozoic granitic intrusions and its tectonic implications in north Altay orogen, Xinjiang. Acta Petrol Sin 28(08):2307–2316 (in Chinese)

    Google Scholar 

  • Donnelly KE, Goldstein SL, Langmuir CH, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366

    Article  Google Scholar 

  • Eby GN (1990) A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Filippova IB, Bush VA, Didenko AN (2001) Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russ J Earth Sci 3:405–426

    Article  Google Scholar 

  • Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY (2009) Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266:373–398

    Article  Google Scholar 

  • Guo Z, Wilson M, Liu J (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47(6):1177–1220

    Article  Google Scholar 

  • Han BF, Guo ZJ, Zhang ZC, Zhang L, Chen JF, Song B (2010) Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geol Soc Am Bull 122:627–640

    Article  Google Scholar 

  • Han BF, He GQ, Wang XC, Guo ZJ (2011) Late Carboniferous collision between the Tarim and Kazakhstan–Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth Sci Rev 109:74–93

    Article  Google Scholar 

  • He GQ, Li MS, Liu DQ, Tang YL, Zhou RH (1994) Paleozoic crustal evolution and mineralization in Xinjiang of China. Xinjiang People’s Publishing House & Hongkong Education and Cultural Press Ltd, Urumqi, pp 1–437 (in Chinese)

  • Hendrix MS, Graham SA, Amory JY, Badarch G (1996) Noyon Uul syncline, southern Mongolia; lower Mesozoic sedimentary record of the tectonic amalgamation of Central Asia. Geol Soc Am Bull 108:1256–1274

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrytallization of protolith igneous zircon. J Metamorph Geol 18(4):423–439

    Article  Google Scholar 

  • Huang XL, Yu Y, Li J, Tong LX, Chen LL (2013) Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse. Lithos 177:268–284

    Article  Google Scholar 

  • Jahn BM, Windley BF, Natalin’s B, Dobretsov N (2004) Phanerozoic continental growth in central Asia. J Asian Earth Sci 23:599–603

    Article  Google Scholar 

  • Kheraskova TN, Didenko AN, Bush VA, Volozh YA (2003) The Vendian–Early Paleozoic history of the continental margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt. Russ J Earth Sci 5:165–184

    Article  Google Scholar 

  • Li JY, Xiao WJ, Wang KZ, Sun GH, Gao LM (2003) Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of the eastern Xinjiang, NW China. In: Mao J, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ, Hart C (eds) Tectonic evolution and metallogeny of the Chinese Altai and Tianshan, IAGOD Guidebook Series, 10CERCAM/NHM, London, pp 31–74

    Google Scholar 

  • Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM, Zhu ZX (2006) Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation. Acta Geol Sin 80(1):148–168 (in Chinese)

    Article  Google Scholar 

  • Li HJ, He GQ, Wu TR, Wu B (2010) Discovery of the early Paleozoic post-collisional granite in Altay, China and its geological significance. Acta Petrol Sin 26(08):2445–2451 (in Chinese)

    Google Scholar 

  • Long XP, Sun M, Yuan C, Xiao WJ, Lin SF, Wu FY, Xia XP, Cai KD (2007) U–Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai: implications for early Palaeozoic tectonic evolution. Tectonics 26:TC5015

    Article  Google Scholar 

  • Lü SJ, Yang FQ, Chai FM, Zhang XB, Jiang LP, Liu F, Zhang ZX, Geng XX, Ouyang LJ (2012a) Zircon U–Pb dating for intrusions in Laoshankou Ore District in northern margin of east Junggar and their significances. Geol Rev 58(1):149–164 (in Chinese)

    Google Scholar 

  • Lü ZH, Zhang H, Tang Y, Guan SJ (2012b) Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: evidence from zircon U–Pb and Hf isotopes. Lithos 154:374–391

    Article  Google Scholar 

  • Ludwig KR (1991) Isoplot: a plotting and regression program for radiogenic isotope data. US Geol Surv Open-File Rep 39:91–445

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Muhetaer Z, Nijat A, Wu ZN (2015) Geochemical characteristics of the volcanics from the southern Jueluotage area and their constraints on the tectonic evolution of Paleo-Asian Ocean. Earth Sci Front 22(1):238–250 (in Chinese with English abstract)

    Google Scholar 

  • Nelson DR, McCulloch MT, Sun SS (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta 50:231–245

    Article  Google Scholar 

  • Pan D, Ding RF, Zhang H, You J (2012) Main characteristics and prospecting perspective of Aketasi gold field prospecting target area in Fuyun County, Xinjiang. Sci Technol Eng 12(5):1007–1013 (in Chinese)

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rock. J Petrol 25:956–983

    Article  Google Scholar 

  • Ren BQ, Zhang H, Tang Y, Lü ZH (2011) LA-ICPMS U–Pb Zircon geochronology of the Altai Pegmatites and its geological significance. Acta Mineral Sin 31(3):587–596 (in Chinese)

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Article  Google Scholar 

  • Seghedi I, Downes H, Pécskay Z (2001) Magma genesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos 57:237–262

    Article  Google Scholar 

  • Sengör AMC, Natalin BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Shen XM, Zhang HX, Wang Q, Wyman DA, Yang YH (2011) Late Devonian–Early Permian A-type granites in the southern Altay Range, Northwest China: petrogenesis and implications for tectonic setting of ‘‘A2-type’’ granites. J Asian Earth Sci 42:986–1007

    Article  Google Scholar 

  • Sun SS, McDonough WF (1979) Chemical approximationg to the modal QAPF classification of the igneous rocks. N Jb Miner Abh 136:169–206

    Google Scholar 

  • Sun M, Yuan C, Xiao W, Long X, Xia X, Zhao G, Lin S, Wu F, Kröner A (2008) Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chem Geol 247:352–383

    Article  Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J Volcanol Geoth Res 29:293–309

    Article  Google Scholar 

  • Wang JB, Xu X (2006) Post-collisional tectonic evolution and metallogenesis in Northern Xinjiang, China. Acta Geol Sin 80(1):24–27

    Google Scholar 

  • Wang DH, Chen YC, Xu ZG (2003) 40Ar/39Ar isotope dating on muscovites from Indosinian raremetal deposits in central Altay, northwestern China. Bull Mineral Petrol Geochem 22(1):14–17 (in Chinese)

    Google Scholar 

  • Wang T, Tong Y, Li S, Zhang JJ, Shi XJ, Li JT, Han BF, Hong DW (2010) Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay. Acta Petrol Mineral 29(6):605–607 (in Chinese)

    Google Scholar 

  • Wang YJ, Yuan C, Long XP, Sun M, Xiao WJ, Zhao GC, Cai KD, Jiang YD (2011) Geochemistry, zircon U–Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: petrogenesis and tectonic implications. J Asian Earth Sci 42:969–985

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Springer, London

  • Windley BF, Alexeiev D, Xiao W, Kroner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47

    Article  Google Scholar 

  • Xiao WJ, Santosh M (2014) The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res 25(4):1429–1444

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K, Wang Z (2004) Palaeozoic accretionary and convergent tectonics of the Southern Altaids: implications for the growth of Central Asia. J Geol Soc Lond 161(3):339–342

    Article  Google Scholar 

  • Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117

    Article  Google Scholar 

  • Xiao WJ, Kröner A, Windley BF (2009) Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. Int J Earth Sci 98:1185–1188

    Article  Google Scholar 

  • Xiao WJ, Huang BC, Han CM, Sun S, Li JL (2010) A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res 18:253–273

    Article  Google Scholar 

  • Xu XY, Li RS, Chen JL, Ma ZP, Li ZP, Wang HL, Bai JK, Tang Z (2014) New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area. Acta Petrol Sin 30(6):1521–1534 (in Chinese with English abstract)

    Google Scholar 

  • Yakubchuk AS (2004) Architecture and mineral deposit settings of Altaid orogenic collage: a revised model. J Asian Earth Sci 23:761–779

    Article  Google Scholar 

  • Yang GX, Li YJ, Li ZC, Liu XY, Yang BK, Wu HE (2010) Genesis and tectonic settings of post-collision volcanic rocks in north eastern margin of East Junggar, Xinjiang. Earth Sci Frontiers 17(1):049–060 (in Chinese)

    Google Scholar 

  • Yang M, Wang JL, Wang JQ, Liu C (2015) Late Carboniferous intra-oceanic subduction and mineralization in western Junggar: evidence from the petrology, geochemistry and zircon U–Pb geochronology of I# ore-bearing granite body in Suyunhe molybdenite orefield, Xinjiang. Acta Petrol Sin 31(2):523–533 (in Chinese with English abstract)

    Google Scholar 

  • Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY (2003) LA-ICPMS Zircon U–Pb age and Ree analysis in Cenozoic intrusive rock in northeast China. Chin Sci Bull 48(14):1511–1520 (in Chinese)

    Article  Google Scholar 

  • Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP, Long XP (2007) Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chem Geol 242:22–39

    Article  Google Scholar 

  • Zhang X, Zhang H (2014) Geochronological, geochemical, and Sr–Nd–Hf isotopic studies of the Baiyanghe A-type granite porphyry in the western Junggar: implications for its petrogenesis and tectonic setting. Gondwana Res 25:1554–1569

    Article  Google Scholar 

  • Zhang HX, Niu HC, Terada K, Yu XY, Sato H, Ito J (2003) Zircon SHRIMP U–Pb dating on plagiogranite from the Kuerti ophiolite in Altay. North Xinjiang. Chinese Science Bulletin 48(2):231–235

    Google Scholar 

  • Zhang F, Chen JP, Xu T, Fan JJ, Pan AJ, Guo XD, Li JM, Chao YY (2014) Late Paleozoic subduction in the eastern Junggar: evidence from the petrology, geochemistry and geochronology of Carboniferous volcanic rocks. Geotecton Metallog 38(1):140–156 (in Chinese with English abstract)

    Google Scholar 

  • Zhong YF, Ma CQ, Zhang C, Wang SM, She ZB, Liu L, Xu HJ (2013) Zircon U–Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic–felsic complex at the southeastern margin of the Yangtze Block. J Asian Earth Sci 74:11–24

    Article  Google Scholar 

  • Zhu YF, Zeng Y, Gu L (2006) Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. J Asian Earth Sci 27(1):61–77

    Article  Google Scholar 

Download references

Acknowledgments

This research project was jointly financially supported by the Mineral Prospecting and Assessment project, CGS (1212011085020) and the National Nature Science Foundation of China (40972066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhang, X., Xu, J. et al. Geochemical and geochronological studies of the Aketas granite from Fuyun County, Xinjiang: the implications of the petrogenesis and tectonic setting. Chin. J. Geochem. 34, 579–591 (2015). https://doi.org/10.1007/s11631-015-0071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-015-0071-5

Keywords

Navigation