Advertisement

Chinese Journal of Geochemistry

, Volume 33, Issue 2, pp 125–130 | Cite as

The relationship between apparent equilibrium temperature and closure temperature with application to oxygen isotope geospeedometry

  • Huaiwei NiEmail author
Article

Abstract

Oxygen isotope fractionation between coexisting minerals in slowly cooled rocks conveys information about their cooling history. By using the fast grain boundary (FGB) model to simulate closed-system diffusive exchange of oxygen isotopes between coexisting minerals, I show that the apparent equilibrium temperatures (T ae) by the mineral pair with the largest isotopic fractionation (PLIF) always lies between the closure temperatures (T c) of those two minerals. Therefore, when the rate of oxygen diffusion and hence T c for the PLIF chance to be comparable (such as in the case of quartz and magnetite), T ae will serve as a good approximation of T c regardless of variation in mineral proportions. The specialty of the PLIF in constraining T ae within their T c range can be generalized to other stable isotope systems and element partitioning. By approximating T c with T ae and inverting Dodson’s equation, the cooling rate of plutonic or metamorphic rocks can be inferred.

Key words

apparent equilibrium temperature closure temperature oxygen isotope geospeedometry cooling rate diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonamici C.E., Kozdon R., Ushikubo T., and Valley J.W. (2011) High-resolution P-T-t paths from 18O zoning in titanite: A snapshot of late-orogenic collapse in the Grenville of New York [J]. Geology. 39, 959–962.CrossRefGoogle Scholar
  2. Chacko T., Hu X., Mayeda T.K., Clayton R.N., and Goldsmith J.R. (1996) Oxygen isotope fractionations in muscovite, phlogopite, and rutile [J]. Geochimica et Cosmochimica Acta. 60, 2595–2608.CrossRefGoogle Scholar
  3. Chiba H., Chacko T., Clayton R.N., and Goldsmith J.R. (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry [J]. Geochimica et Cosmochimica Acta. 53, 2985–2995.CrossRefGoogle Scholar
  4. Clayton R.N., Goldsmith J.R., and Mayeda T.K. (1989) Oxygen isotope fractionation in quartz, albite, anorthite, and calcite [J]. Geochimica et Cosmochimica Acta. 53, 725–733.CrossRefGoogle Scholar
  5. Coghlan R.A.N. (1990) Studies in Diffusional Transport: Grain Boundary Transport of Oxygen in Feldspar, Diffusion of Oxygen, Strontium and the REE’s in Garnet, and Thermal Histories of Granitic Intrusions in South-central Maine Using Oxygen Isotopes [D]. Brown University, Providence, USA.Google Scholar
  6. Dodson M.H. (1973) Closure temperature in cooling geochronological and petrological systems [J]. Contributions to Mineralogy and Petrology. 40, 259–274.CrossRefGoogle Scholar
  7. Eiler J.M., Baumgartner L.P., and Valley J.W. (1992) Intercrystalline stable isotope diffusion: A fast grain boundary model [J]. Contributions to Mineralogy and Petrology. 112, 543–557.CrossRefGoogle Scholar
  8. Eiler J.M., Valley J.W., and Baumgartner L.P. (1993) A new look at stable isotope thermometry [J]. Geochimica et Cosmochimica Acta. 57, 2571–2583.CrossRefGoogle Scholar
  9. Eiler J.M., Baumgartner L.P., and Valley J.W. (1994) Fast grain boundary: A Fortran-77 program for calculating the effects of retrograde interdiffusion of stable isotopes [J]. Computers & Geosciences. 20, 1415–1434.CrossRefGoogle Scholar
  10. Farver J.R. (1989) Oxygen self-diffusion in diopside with application to cooling rate determinations [J]. Earth and Planetary Science Letters. 92, 386–396.CrossRefGoogle Scholar
  11. Farver J.R. (1994) Oxygen self-diffusion in calcite: Dependence on temperature and water fugacity [J]. Earth and Planetary Science Letters. 121, 575–587.CrossRefGoogle Scholar
  12. Farver J.R. and Giletti B.J. (1985) Oxygen diffusion in amphiboles [J]. Geochimica et Cosmochimica Acta. 49, 1403–1411.CrossRefGoogle Scholar
  13. Farver J.R. and Giletti B.J. (1989) Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determinations [J]. Geochimica et Cosmochimica Acta. 53, 1621–1631.CrossRefGoogle Scholar
  14. Farver J.R. and Yund R.A. (1991) Oxygen diffusion in quartz: Dependence on temperature and water fugacity [J]. Chemical Geology. 90, 55–70.CrossRefGoogle Scholar
  15. Fortier S.M. and Giletti B.J. (1991) Volume self-diffusion of oxygen in biotite, muscovite, and phlogopite micas [J]. Geochimica et Cosmochimica Acta. 55, 1319–1330.CrossRefGoogle Scholar
  16. Fortier S.M. and Lüttge A. (1995) An experimental calibration of the temperature dependence of oxygen isotope fractionation between apatite and calcite at high temperatures (350–800°C) [J]. Chemical Geology. 125, 281–290.CrossRefGoogle Scholar
  17. Giletti B.J. (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks [J]. Earth and Planetary Science Letters. 77, 218–228.CrossRefGoogle Scholar
  18. Giletti B.J. and Hess K.C. (1988) Oxygen diffusion in magnetite [J]. Earth and Planetary Science Letters. 89, 115–122.CrossRefGoogle Scholar
  19. Giletti B.J., Semet M.P., and Yund R.A. (1978) Studies in diffusion-III. Oxygen in feldspars: An ion microprobe determination [J]. Geochimica et Cosmochimica Acta. 42, 45–57.Google Scholar
  20. Jenkin G.R.T., Farrow C.M., Fallick A.E., and Higgins D. (1994) Oxygen isotope exchange and closure temperatures in cooling rocks [J]. Journal of Metamorphic Geology. 12, 221–235.CrossRefGoogle Scholar
  21. Johnson S.E., Fletcher J.M., Fanning C.M., Vernon R.H., Paterson S.R., and Tate M.C. (2003) Structure, emplacement and lateral expansion of the San Jose tonalite pluton, Peninsular Ranges batholith, Baja California, Mexico [J]. Journal of Structural Geology. 25, 1933–1957.CrossRefGoogle Scholar
  22. Kohn M.J. and Valley J.W. (1998a) Obtaining equilibrium oxygen isotope fractionations from rocks: Theory and examples [J]. Contributions to Mineralogy and Petrology. 132, 209–224.CrossRefGoogle Scholar
  23. Kohn M.J. and Valley J.W. (1998b) Oxygen isotope geochemistry of the amphiboles: Isotope effects of cation substitutions in minerals [J]. Geochimica et Cosmochimica Acta. 62, 1947–1958.CrossRefGoogle Scholar
  24. Kohn M.J. (1999) Why most “dry” rocks should cool “wet” [J]. American Mineralogist. 84, 570–580.Google Scholar
  25. Moore D.K., Cherniak D.J., and Watson E.B. (1998) Oxygen diffusion in rutile from 750 to 1000°C and 0.1 to 11000 MPa [J]. American Mineralogist. 83, 700–711.Google Scholar
  26. Peck W.H., Valley J.W., and Graham C.M. (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks [J]. American Mineralogist. 88, 1003–1014.Google Scholar
  27. Robie R.A. and Hemingway B.S. (1995) Thermodynamics Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 pascals) Pressure and at Higher Temperatures [C]. pp.456. U.S. Geological Survey Bulletin. 2131.Google Scholar
  28. Taylor H.P.Jr. and Epstein S. (1962) Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks [J]. Geological Society of America Bulletin. 73, 461–480.CrossRefGoogle Scholar
  29. Taylor H.P.Jr. (1968) The oxygen isotope geochemistry of igneous rocks [J]. Contributions to Mineralogy and Petrology. 19, 1–71.CrossRefGoogle Scholar
  30. Valley J.W., Bindeman I.N., and Peck W.H. (2003) Empirical calibration of oxygen isotope fractionation in zircon [J]. Geochimica et Cosmochimica Acta. 67, 3257–3266.CrossRefGoogle Scholar
  31. Watson E.B. and Cherniak D.J. (1997) Oxygen diffusion in zircon [J]. Earth and Planetary Science Letters. 148, 527–544.CrossRefGoogle Scholar
  32. Zhang X.Y., Cherniak D.J., and Watson E.B. (2006) Oxygen diffusion in titanite: Lattice diffusion and fast-path diffusion in single crystals [J]. Chemical Geology. 235, 105–123.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Earth and Environmental SciencesThe University of MichiganAnn ArborUSA

Personalised recommendations