Skip to main content
Log in

Petrogenetic study of Mesoproterozoic volcanic rocks of North Delhi fold belt, NW Indian shield: implications for mantle conditions during Proterozoic

  • Original Article
  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Mesoproterozoic North Delhi fold belt of NW Indian shield comprises three volcano-sedimentary basins viz. Bayana, Alwar and Khetri aligned parallel to each other from east to west. Each basin contains excellent exposures of mafic volcanic rocks. Major, trace and rare earth element abundances of volcanic rocks of the three basins are significantly diverse. Bayana and Alwar volcanics are tholeiites bearing close similarity with low Ti-continental flood basalts. However, Bayana volcanics are characteristically enriched in incompatible trace elements and REEs while Alwar volcanics display least enriched incompatible trace element abundances and flat REE patterns. The Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. REE based source modeling suggests that Bayana suite was formed from the melts derived from 1 % to 10 % (avg. 4 %) of the partial melting of a spinel lherzolite source giving a residual mineralogy of 56 % Olv, 25 % Opx and 19 % Cpx. Whereas Alwar suite evolved through 12 %–20 % (avg. 15 %) partial melting of the same source with a residual mineralogy 61 % Olv, 25 % Opx and 14 % Cpx. Khetri volcanics are exposed at two localities Kolihan and Madhan–Kudhan. The Kolihan volcanics were derived from 1 % to 6 % (avg. 4 %) partial melting with residual mineralogy 56 % Olv, 25 % Opx and 19 % Cpx whereas the magma of Madhan Kudhan volcanic suite was generated by 15%–30 % partial melting of the same source leaving behind 64 % Olv, 25 % Opx and 11 % Cpx as residual mineralogy. This source modeling proves that melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field under the influence of mantle plume. During the course of ascent, Bayana melts were crustally contaminated but Alwar melts remained unaffected. There was two tier magma production in Khetri region, one from the partial melting of the mantle wedge overlying the subducted oceanic plate which formed Kolihan suite and two the melting of the subducted plate itself generating Madhan–Kudhan volcanics. It is interpreted that during Mesoproterozoic (1,800 Ma), the continental lithosphere of NW Indian shield suffered stretching, attenuation and fracturing in response to a rising plume. Consequently, differential crustal extension coupled with variable attenuation brought the asthenosphere to shallower setting which led to the production of tholeiitic melts. These melts enroute to the surface suffered variable lithospheric contamination depending upon the thickness of traversed crust. The Khetri basin attained maturity which resulted in the generation of true oceanic crust and its subsequent destruction through subduction. The spatial existence of three suites of mafic volcanics of diverse chemical signatures is best example of subduction–plume interaction. It is therefore, proposed that the Mesoproterozoic crust of NW Indian shield has evolved through the operation of a complete Wilson cycle at about 1,832 Ma, the age of mafic volcanics of Khetri basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aberg G, Aguirre L, Levi B, Nystrom JO (1984) Spreading subsidence and generation of ensialic marginal bsins: an example from the early Cretaceous of central Chile. Geol Soc Lond Spec Publ 65:185–193

    Article  Google Scholar 

  • Abu-Hamatteh ZHS, Raza M, Ahmad T (1994) Geochemistry of early Proterozoic mafic and ultramafic rocks of Jharol Group, Rajasthan, northwestern India. J Geol Soc India 44:144–156

    Google Scholar 

  • Ahmad T, Tarney J (1991) Geochemistry and petrogenesis of Garhwal volcanics: implication for evolution of the north Indian lithosphere. Precambrian Res 50:1–20

    Article  Google Scholar 

  • Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BGJ, Bachelery P, Cheminee JL (1997) The geochemical regimes of Piton de la Fournaise volcano (Reunion) during the last 530,000 years. J Petrol 38:171–201

    Article  Google Scholar 

  • Allegre CJ, Turcotte DL (1985) Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys Res Lett 12:207–210

    Article  Google Scholar 

  • Arculus RJ, Powell R (1986) Source component mixing in the regions of arc magma generation. J Geophys Res 91(B6):5913–5926

    Article  Google Scholar 

  • Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys Res 97:10967–10987

    Article  Google Scholar 

  • Arndt NT, Jenner GA (1986) Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chem Geol 56:229–255

    Article  Google Scholar 

  • Arndt NT, Czamanske GK, Wooden LJ, Fedorenko AV (1993) Mantle and crustal contribution to continental flood volcanism. Tectonophys 223:39–52

    Article  Google Scholar 

  • Balaram V (1991) Determination of rare earth elements in geological sample by inductively coupled plasma-mass spectrophotometry. J Indian Chem Soc 65:600–603

    Google Scholar 

  • Balaram V, Ramesh SL, Anjaiah KV (1996) New trace element data in thirteen GSF reference sample by ICP-MS. Geostand News Lett 20:71–78

    Article  Google Scholar 

  • Banerjee AK, Singh SP (1977) Sedimentary tectonics of Bayana sub-basin of northeastern Rajasthan. J Indian Assoc Sedimentol 1:74–85

    Google Scholar 

  • Barthlomew DS, Tarney J (1984) Crustal extension in southern Andes (45–46°). Geol Soc Lond Spec Publ 65:195–205

    Article  Google Scholar 

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, p 1286

    Google Scholar 

  • Bertrand H (1991) The Mesozoic tholeiitic province of northwest Africa: a volcano- tectonic record of the early opening of central Atlantic. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural setting. The Phanerozoic African plate. Springer, Berlin, pp 147–188

    Chapter  Google Scholar 

  • Bhat MI, Ahmad T (1990) Petrogenesis and mantle source characteristics of the Abor volcanic rocks, eastern Himalaya. J Geol Soc India 36:227–246

    Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981) Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. J Geochim Cosmochim Acta 45:2483–2499

    Article  Google Scholar 

  • Condie KC (1982) Plate-tectonics model for Proterozoic continental accretion in the southwestern United States. Geology 10:37–42

  • Condie KC (1987) Early Proterozoic volcanic regimes in southwestern North America. Geol Soc Lond Spec Publ 33:211–218

    Article  Google Scholar 

  • Condie KC (1990) Growth and accretion of continental crust: inferences based on Laurentia. Chem Geol 83:183–194

  • Dasgupta SP (1968) The structural history of the Khetri copper belt, Jhunjhunu and Sikar districts, Rajasthan. Mem Geol Surv India 98:170

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Article  Google Scholar 

  • Davies JH, Von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • Davies JF, Grant RWE, Whitehead RES (1979) Immobile trace elements and Archaean volcanic stratigraphy in the Timmins mining areas, Ontario. Can J Earth Sci 16:305–311

    Article  Google Scholar 

  • Duncan RA, McCulloch MT, Barsczus HGG, Nelso DR (1986) Plume versus lithosphere sources for melts at Ua Pou, Marquesas island. Nature 322:534–538

    Article  Google Scholar 

  • Fatima S, Khan MS (2012) Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting and crustal evolution. Int Geol Rev 54:1113–1144

    Article  Google Scholar 

  • Feigenson MD, Carr MJ (1993) The source of Central American lavas: inferences from geochemical inverse modeling. Contrib Miner Petrol 113:226–235

    Article  Google Scholar 

  • Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80

    Article  Google Scholar 

  • Floyd PA, Kelling G, Gokcen SL, Gokcen N (1991) Geochemistry and tectonic environment of basaltic rocks from the Miss ophiolitic melange, south Turkey. Chem Geol 89:263–280

  • Foley SF, Barth MG, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64:933–938

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Gaskarth JW, Parslow GR (1987) Proterozoic volcanism in the Fin Flon greenstone belt, east central Saskatchewan, Canada. Geol Soc Lond Spec Publ 33:183–200

    Article  Google Scholar 

  • Gazel E, Hoernle K, Michael J, Carr MJ, Herzberg C, Saginor I, Paul van den B, Hauff Mark F, Feigenson M, Carl S III (2011) Plume–subduction interaction in southern Central America: mantle upwelling and slab melting. Lithos 121:117–134

    Article  Google Scholar 

  • Gerlach DC, Hart SR, Morales VWJ, Palacios C (1986) Mantle heterogeneity beneath the Nazaca plate, San Felix and San Fernandez island. Nature 322:165–169

    Article  Google Scholar 

  • Gopalan K, MacDougall JD, Roy AB, Murali AV (1990) Sm-Nd evidences for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Res 48:287–297

    Article  Google Scholar 

  • Grutzeck M, Kridelbaugh SJ, Weill DF (1974) The distribution of Sr and REE between diopside and silicate liquid. Geophys Res Lett 1:273–275

    Article  Google Scholar 

  • Guerot C (1993) Geochronological results in the Khetri copper belt (Rajasthan, India). APP2-BRGM report, R 36979 DEX, DMM-3

  • Gupta SN, Arrora YK, Mathur RK, Prasad Iqbaluddin B, Sahai TN, Sharma SB (1980) Lithostratigraphic map of the Aravalli region. Geological Survey of India, Calcutta

    Google Scholar 

  • Gupta SN, Arora YK, Mathur RK, Prasad Iqbaluddin B, Sahai TN, Sharma SB (1997) The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Geol Soc India Mem 123:262

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous system. Annu Rev Earth Planet Lett 8:371–406

    Article  Google Scholar 

  • Hawkesworth CJ, Rogers NW, Van Calsteren PWC, Menzies MA (1984) Mantle enrichment processes. Nature 311:331–335

    Article  Google Scholar 

  • Hawkesworth CJ, Mantovani MSM, Taylor PN, Palacz Z (1986) Evidence from the Paraná of south Brazil for a continental contribution to Dupal basalts. Nature 322:356–359

  • Hawkesworth CJ, Lightfoot PC, Fedorenko VA et al (1995) Magma differentiation and mineralization in the Siberian continental flood basalts. Lithos 34:61–88

    Article  Google Scholar 

  • Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet Lett 105:134–148

    Article  Google Scholar 

  • Heron AM (1953) Geology of central and southern Rajputana. Mem Geol Surv India 79:389

    Google Scholar 

  • Herzberg CT (1972) Stability fields of plagioclase and spinel-lherzlite. Program Exp Petrol 2:145–148

    Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochem Geophys Geosyst 9:Q09001. doi:10.1029/2008GC002057

    Article  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, Lopez-Escobar L (1986) Multiple sources of basaltic rocks from the southern volcanic zone of Andes (34°–41°): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Holm PE (1985) The geochemical finger prints of different tectonomagmatic environments using hygromagmatophile elements of tholeiitic basalts and basaltic andesites. Chem Geol 51:303–313

    Article  Google Scholar 

  • Humayun M, Qin LP, Norman MD (2004) Geochemical evidence for excess iron in the Hawaiian mantle: implication for mantle dynamics. Science 306:91–104

    Article  Google Scholar 

  • Humphris SE, Thompson G (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geochem Cosmochim Acta 42:127–136

    Article  Google Scholar 

  • Khan MS, Raza M (1993) Geochemical attributes of Bari lake volcanics (early Proterozoic), Udaipur, Rajasthan. Bull Indian Geol Assoc 46:1–11

    Google Scholar 

  • Khan MS, Smith TE, Raza M, Huang J (2005) Geology, geochemistry and tectonic significance of mafic-ultramafic rocks of Mesoproterozoic Phulad ophiolite suite of South Delhi fold belt, NW Indian shield. Gondwana Res 8(4):553–566

    Article  Google Scholar 

  • Kuzmichev A, Kroner A, Hegner E, Dunyi L, Yusheng W (2005) The Sheskhid ophiolite, northern Mongolia: a key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res 138:125–150

    Article  Google Scholar 

  • Leeman WP (1976) Petrogenesis of McKinney (Snake River) olivine tholeiite in light of rare-earth element and Cr/Nd distributions. J Geol Soc Am Bull 87:1582–1586

    Article  Google Scholar 

  • Lefleche MR, Dupuy C, Bougault H (1992) Geochemistry and petrogenesis of Archean volcanic rocks of the southern Abitibi Belt, Quebec. Precambrian Res 57:207–241

    Article  Google Scholar 

  • Levin V, Shapiro N, Park J, Ritzwoller M (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature 418:763–767

    Article  Google Scholar 

  • Li XH, Li ZX, Wingate MTD et al (2006) Geochemistry of the 755 Ma Mundine well dyke swarm, North Western Australia: part of a Neoproterozoic mantle super plume beneath Rodinia? Precambrian Res 146:1–15

    Article  Google Scholar 

  • Martin H, Smithies RH,  Rapper R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mehta PK, Kaur G, Chaudhari N (2000) Explosive magmatism in Delhi supergroup, Khetri copper belt, North Rajasthan (abstract). Structural and tectonics of Indian plate. Punjab University, Chandigarh, pp 41–42

    Google Scholar 

  • Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Academic Press, New York

    Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford monographs on geology and geophysics, vol 6. Oxford University Press, Oxford

    Google Scholar 

  • O’Hara MJ (1968) Are ocean floor basalts primary magmas? Nature 220:683–686

    Article  Google Scholar 

  • Pallares C, Maury RC, Bellon H, Royer JY, Calmus T, Aguillon-Robles A, Cotten J, Benoit M, Michaud F, Bourgois J (2007) Slab-tearing following ridge–trench collision: evidence from Miocene volcanism in Baja California, Mexico. J Volcanol Geotherm Res 161:95–117

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic andesites. Wiley, Chichester, pp 525–548

  • Pearce JA (1983) Role of subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publication, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Gale DH (1977) Identification of ore deposition environment from trace element geochemistry. Geol Soc Lond Spec Publ 7:14–24

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  • Raza M, Khan MS (1993) Basal Aravalli volcanism: evidence for an abortive attempt to form Proterozoic ensialic greenstone belt in northwestern part of Indian shield. J Geol Soc India 42:493–512

    Google Scholar 

  • Raza M, Azam MS, Khan MS (2001) Geochemistry of Mesoproterozoic mafic volcanics of Bayana basin, North Delhi fold belt: constraints on mantle source conditions and magmatic evolution. J Geol Soc India 57:507–518

    Google Scholar 

  • Raza M, Khan MS, Azam MS (2007) Plate-plume accretion tectonics in Proterozoic terrain of northeastern Rajasthan, India: evidence from mafic volcanic rocks of North Delhi fold belt. Isl Arc 16:536–552

    Article  Google Scholar 

  • Ringwood AE (1990) Slab mantle interactions: petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol 82:187–207

    Article  Google Scholar 

  • Roy AB (1988) Stratigraphic and tectonic framework of the Aravalli mountain range. Mem Geol Surv India 7:3–32

    Google Scholar 

  • Roy Chowdhary MK, Dasgupta SP (1965) Ore location in Khetri copper belt, Rajasthan. Indian Econ Geol 65:331–339

    Google Scholar 

  • Roy AB, Paliwal BS (1981) Evolution of lower Proterozoic epicontinental deposits: stromatolite bearing Aravalli rocks of Udaipur, Rajasthan, India. Precambrian Res 14:49–74

    Article  Google Scholar 

  • Sandeman HA, Hanmer S, Tella S, Arimetage AA, Davis WJ, Ryan JJ (2006) Petrogenesis of Neoarchaean rocks of the Mc Quoid supracrustal belt: a back- arc setting for the northwestern Hearne, subdomain, and western Churchill province, Canada. Precambrian Res 144:140–165

    Article  Google Scholar 

  • Saunders AD, Tarney J, Weaver SD (1980) Transverse chemical variation across  the Antarctic Peninsula: implications for the genesis of calc alkaline magma. Earth Planet Sci Lett 46:344–360

  • Saunders AD, Storey M, Kent RW, Norry MJ (1992) Consequence of plume- lithosphere interactions. Geol Soc Lond Spec Publ 68:42–60

    Article  Google Scholar 

  • Singh SP (1982) Stratigraphy of the Delhi supergroup in Bayana sub-basin, southeastern Rajasthan. Rec Geol Surv India 112:46–62

    Google Scholar 

  • Sinha-Roy S (2000) Precambrian metallotects and mineralization types in Rajasthan: their relation to crustal evolution. In: Deb M (ed) Crustal evolution and metallogeny in the northern Indian shield. Narosa Publication, New Delhi, pp 217–239

    Google Scholar 

  • Smith TE, Holm PE (1987) The trace element geochemistry of metavolcanics and dykes from the central metasedimentary belt of the Grenville province, southeastern Ontario, Canada. Geol Soc Lond Spec Publ 33:453–470

    Article  Google Scholar 

  • Smith TE, Holm PE (1990) The petrogenesis of mafic minor intrusions and volcanics of the central metasedimentary belt of the Grenville province, Canada: MORB and OIB sources. Precambrian Res 48:361–373

    Article  Google Scholar 

  • Smith GP, Wiens DA, Fischer KM, Dorman LM, Webb SC, Hildebrand JA (2001) A complex pattern of mantle flow in the Lau back arc. Science 292:713–716

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sun SS, McDononough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle composition and process. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Sun SS, Nesbitt RW (1978) Chemical regularities and genetic significance of ophiolitic basalts. Geology 6:689–693

    Article  Google Scholar 

  • Tarney J (1992) Geochemistry and significance of mafic dyke swarms in Proterozoic. In: Condie KC (ed) Proterozoic Crustal Evolution. Elsevier, Amsterdam, pp 151–179

    Chapter  Google Scholar 

  • Teklay M (2006) Neoproterozoic arc-back-arc system analog to modern arc-back-arc system: evidence from tholeiite-boninite association, serpentinites mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield. Precambrian Res 145:81–92

    Article  Google Scholar 

  • Thompson RN, Morrison MA, Dickin AP, Hendry GL (1983) Continental flood basalts….arachnids rule OK? In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 158–185

    Google Scholar 

  • Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of relative roles of crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc Lond A 310:549–590

    Article  Google Scholar 

  • Thompson RN, Morrison MA, Dickin AP, Gibson IL, Harmon RS (1986) Two contrasting styles of interaction between basic magmas and continental crust in the British tertiary volcanic province. J Geophys Res 91(B6):5985–5997

    Article  Google Scholar 

  • Turner S, Hawkesworth C (1998) Using geochemistry to map mantle flow beneath the Lau basin. Geology 26:1019–1022

    Article  Google Scholar 

  • Vidal P, Chauvel C, Brousse R (1984) Large mantle heterogeneity beneath French Polynesia. Nature 307:536–538

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Watters BR, Pearce JA (1987) Metavolcanic rocks of La Ronge domain in the Churchill Province, Saskatchewan: geochemical evidence for a volcanic arc origin. Geol Soc Lond 33:167–182

  • Wendt JI, Regelous M, Collerson KD, Ewart A (1997) Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga. Geology 25:611–614

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis: a global tectonic approach. Unwin Hyman Ltd., London

    Book  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–344

    Article  Google Scholar 

  • Winchester JA, Max MD, Long CB (1987) Trace element geochemical correlation in the reworked Proterozoic Dalradian metavolcanic suite of the western Ox Mountains and NW Mayo inliers, Ireland. Geol Soc Lond 33:489–502

  • Wortel MJR, Spakman W (2000) Geophysics—subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Chairman, Department of Geology for providing facilities in the department for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamim Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M.S., Khan, M.S. & Raza, M. Petrogenetic study of Mesoproterozoic volcanic rocks of North Delhi fold belt, NW Indian shield: implications for mantle conditions during Proterozoic. Chin. J. Geochem. 34, 93–114 (2015). https://doi.org/10.1007/s11631-014-0024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-014-0024-4

Keywords

Navigation