Skip to main content
Log in

Variations in nitrogen isotopic values among various particle-sized fractions in modern soil in northwestern China

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Ratios of stable nitrogen isotopes in organic matter derived from plants and preserved in soil are potential tracers for nitrogen cycles in natural ecosystems and valuable for evaluation of climate change. However, the relationship between nitrogen isotopic compositions in surface soil and in plant litter during the decomposition process from plant litter to soil organic matter is not well understood. By using nitrogen isotopic analysis of soil particle-sized fractions, nitrogen isotope discrimination between plant litter and surface soil organic matter in various modern ecosystems in northwestern China was conducted. The results of our study indicate that: (1) in general, the nitrogen isotopic compositions of particle-sized fractions from surface soil are different, and δ15N values increase from plant litter to fine soil organic matter; (2) the δ15N values in the soil particle-sized fractions become larger with increasing relative humidity and temperature, and the largest variation in the δ15N values is from −5.9‰ to −0.3‰; and (3) under a controlled climate, significant nitrogen isotope differences in δ15N values (Δδ15Nplant-soil) between plant litter and bulk soil organic matter were observed, with the values of 1.52 to 4.75 at various sites. Our results suggested that comparisons of Δδ15N values between bulk soil and the particle-sized fractions of soil could reveal the effect of humidity on transferring process of nitrogen from plant to soil in arid and semi-arid ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundson R., Austin A.T., Schuur E.A.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D., and Baisden W.T. (2003) Global patterns of the isotopic composition of soil and plant nitrogen [J]. Global Biogeochemical Cycle. 17(1), 1031, doi:10.1029/2002GB001903.

    Article  Google Scholar 

  • Aranibar J.N., Anderson I.C., Epstein H.E., Ferala C.J.W., Swapa R.J., Ramontshoc J., and Macko S.A. (2008) Nitrogen isotopic composition of soils, C3 and C4 plants along land use gradients in southern Africa [J]. J Arid Environ. 72, 326–337.

    Article  Google Scholar 

  • Aranibar J.N., Otter L., Macko S.A., Feral C.W., Epstein H.E., Dowty P.R., Eckardt F., Shugart H.H., and Swap R.J. (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands [J]. Global Change Biology. 10, 359–373.

    Article  Google Scholar 

  • Austin A.T. and Sala O.E. (1999) Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia [J]. Australian Journal of Plant Physiology. 26, 293–295.

    Article  Google Scholar 

  • Baisden W.T., Amundson R., Brenner D.L., Cook A.C., Kendall C., and Harden J. (2002) A multi-isotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland [J]. Global Biogeochemical Cycles. 16(4), 1135. doi:10.1029/2001GB001823.

    Article  Google Scholar 

  • Billings S.A. and Richter D.D. (2006) Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development [J]. Oecologia. 148, 325–333.

    Article  Google Scholar 

  • Brenner D.L., Amundson R., Baisden W.T., Kendall C., and Harden J. (2001) Soil N and 15N variation with time in a California annual grassland ecosystem [J]. Geochimica et Cosmochimica Acta. 5(22), 4171–4186.

    Article  Google Scholar 

  • Cayet C. and Lichtfouse E. (2001) 13C of plant-derived n-alkanes in soil particle-size fractions [J]. Organic Geochemistry 32, 253–258.

    Article  Google Scholar 

  • Dijkstra P., Williamson C., Menyailo O., Doucett R., KOCH G., and Hungate B.A. (2003) Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow [J]. Isotopes Environ. Health Stud. 39, 29–39.

    Article  Google Scholar 

  • Ewing S.A., Michalski G., Thiemens M., Quinn R.C., Macalady J.L., Kohl S., Wankel S.D., Kendall C., McKay C.P., and Amundson R. (2007) Rainfall limit of the N cycle on Earth [J]. Global Biogeochemical Cycles, 21. GB3009 doi:10.1029/2006GB002838.

    Article  Google Scholar 

  • Garten C.T.Jr (1993) Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed [J]. Ecology 74, 2098–2113.

    Article  Google Scholar 

  • Gerdol R., Petraglia A., Bragazza L., Iacumin P., and Brancaleoni L. (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses [J]. Global Change Biology. 13, 1810–1821.

    Article  Google Scholar 

  • Handley L.L., Austin A.T., Robinson D. et al. (1999) The 15N natural abundance (N) of ecosystem samples reflects measures of water availability [J]. Australian Journal of Plant Physiology. 26, 185–199.

    Article  Google Scholar 

  • Hendricks J.J., Aber J.D., Nadelhoffer K.J., and Hallett R.D. (2000) Nitrogen Controls on Fine Root Substrate Quality in Temperate Forest Ecosystems [J]. Ecosystems. 3, 57–69.

    Article  Google Scholar 

  • Hipkin C.R., Simpson D.J., Wainwright S.J., and Salem M.A. (2004) Nitrification by plants that also fix nitrogen [J]. Nature. 430, 98–101.

    Article  Google Scholar 

  • Hobbie E.A. and Colpaert J.V. (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns [J]. New Phytol. 157, 115–126.

    Article  Google Scholar 

  • Hobbie E.A. and Horton T.R. (2007) Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition [J]. New Phytol. 173, 447–449.

    Article  Google Scholar 

  • Högberg P. (1997) 15N natural abundance in soil-plant systems [J]. The New Phytologist. 137(2), 179–203.

    Article  Google Scholar 

  • Högberg P., Hogberg M.N., Quist M., Ekblad A., and Nasholm T. (1999) Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris [J]. New Phytologist. 142, 569–576.

    Article  Google Scholar 

  • Högberg P., Nordgren A., Buchmann N., Taylor A.F.S., Ekblad A., Högberg M.N., Nyberg G., Ottosson-Löfvenius M., and Read D.J. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature. 411, 789–792.

    Article  Google Scholar 

  • Houlton B.Z., Sigman D.M., and Hedin L.O. (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests [J]. PNAS. 103, 8745–8750.

    Article  Google Scholar 

  • Houlton B.Z., Sigman D.M., Schuur E.A., and Hedin L.O. (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities [J]. PNAS. 104, 8902–8906.

    Article  Google Scholar 

  • Hübner H. (1986) Isotope effects of nitrogen in the soil and biosphere. In The Terrestrial Environment B Vol. 2 (eds. Fritz P. and Fontes J.C.) [M]. pp.361–480. Handbook of Environmental Isotope Geochemistry, Elsevier, New York.

    Google Scholar 

  • Huygens D., Denef K., Vandeweyer R., Godoy R., Van Cleemput O., and Boeckx P. (2008) Do nitrogen isotope patterns reflect microbial colonization of soil organic matter fractions? [J]. Biol Fertil Soils. 44, 955–964.

    Article  Google Scholar 

  • Jin Fahui, Li Shiqing, Lu Hongling, and Li Shengxiu (2007) Relationships of microbial biomass carbon and nitrogen with particle composition and nitrogen mineralization potential in calcareous soil [J]. Chinese Journal of Applied Ecology. 18(12), 2739–2746 (in Chinese with English abstract).

    Google Scholar 

  • Kitayama K. and Iwamoto K. (2001) Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo [J]. Plant and Soil. 229, 203–212.

    Article  Google Scholar 

  • Ledgard S.F., Freney J.R., and Simpson J.R. (1984) Variations in natural enrichment of δ15N in the profiles of some Australian pasture soils [J]. Australian Journal of Soil Research. 22, 155–164.

    Article  Google Scholar 

  • Liu Weiguo and Wang Zheng (2009) Nitrogen isotopic composition of plant-soil in the Loess Plateau and its responding to environmental change [J]. Chinese Science Bulletin. 54, 272–279.

    Article  Google Scholar 

  • Liu Weiguo, An Zhisheng, Zhou Weijian, Head M.J., and Cai Delin (2003) Carbon isotope and C/N ratios of suspended matter in rivers—An indicator of seasonal change in C4/C3 vegetation [J]. Applied Geochemistry. 18, 1241–1249.

    Article  Google Scholar 

  • Liu Xianzhao, Wang Guoan, Li Jiazhu, and Wand Qing (2010) Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing [J]. Science in China Series D-Earth Sciences. 53, 128–140.

    Article  Google Scholar 

  • Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Roberston G.P., Santos O.C., and Treseder K. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests [J]. Biogeochemistry. 46, 45–65.

    Google Scholar 

  • Nadelhoffer K.F. and Fry B. (1988) Controls on natural N-15 and C-13 abundances in forest soil organic-matter [J]. Soil Sci. Soc. Am. J. 52, 1633–1640.

    Article  Google Scholar 

  • Neff J.C., Townsend A.R., Gleixner G. et al. (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon [J]. Nature. 419, 915–917.

    Article  Google Scholar 

  • Nelson D.W. and Sommers L.E. (1982) Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2. Agronomy (eds. Page A.L., Miller R.H., and D.R. Keeney R.H. ) [M]. 9, 539–579.

  • Ometto J., Ehleringer J., Domingues T.F., Berry J.A., Ishida F.Y., Mazzi E., Higuchi N., Flanagan L.B., Nardoto G.B., and Martinelli L.A. (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil [J]. Biogeochemistry. 79, 251–274.

    Article  Google Scholar 

  • Piccolo M.C., Neil C., and Cerri C.C. (1994) Natural abundance of 15N in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin [J]. Oecologia. 99(1–2), 1432–1939.

    Google Scholar 

  • Piccolo M.C., Neil C., Mellilo J.M., Cerri C.C., and Steudler P.A. (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin [J]. Plant and Soil. 182, 249–258.

    Google Scholar 

  • Robinson D., Handley L.L., and Scrimgeour C.M. (1998) A theory for 15N/14N fractionation in nitrate-grown vascular plants [J]. Planta. 205, 397–406.

    Article  Google Scholar 

  • Schulze E.D., Farquhar G.D., Miller J.M., Schulze W., Walker B.H., and Williams R.J. (1999) Interpretation of increased foliar δ15N in woody species along a rainfall gradient in northern Australia [J]. Australian Journal of Plant Physiology. 26, 296–298.

    Article  Google Scholar 

  • Schulze E.D., Williams R.J., Farquhar G.D., Schulze W., Langridge J., Miller J.M., and Walker B.H. (1998) Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia [J]. Australian Journal of Plant Physiology. 25, 413–425.

    Article  Google Scholar 

  • Swap R.J., Aranibar J.N., Dowty P.R., Gilhooly III W.P., and Macko S.A. (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications [J]. Global Change Biology. 10, 350–358.

    Article  Google Scholar 

  • Taylor A.F.S., Högbom L., Högberg M., Lyon A.J.E., Näsholm T., and Högberg P. (1997) Natural 15N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests [J]. New Phytol. 136, 713–720.

    Article  Google Scholar 

  • Zhou Shuzhen., Zhang Ruyi., and Zhang Chao (1997) Meteorology and Climatology [M]. pp.11. Higher Education Press, Beijing (in Chinese).

    Google Scholar 

  • Zhou Zhihua, Liu Congqiang, Xiao Huayun, Li Jun, and Zhu Zhaozhou (2006) Carbon and nitrogen isotope records in sediments of Lake Taihu, China, and their paleoenvironmental significance [J]. Chinese Journal of Geochemistry. 25(suppl.), 271–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, Z., Wang, Z. et al. Variations in nitrogen isotopic values among various particle-sized fractions in modern soil in northwestern China. Chin. J. Geochem. 30, 295–303 (2011). https://doi.org/10.1007/s11631-011-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-011-0513-7

Key words

Navigation