Skip to main content
Log in

Mineralogy, geochemistry, radioactivity and environmental impacts of Gabal Marwa granites, southeastern Sinai, Egypt

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

The Gabal Marwa area is located in the southeastern part of Sinai, Egypt. It comprises gneisses and migmatites, granodiorites and monzogranites. Field, petrographic, mineralogic and chemical investigations indicated that the Gabal Marwa granites are classified as granodiorites and monzogranites. The monzogranites constitute the most predominant rock unit exposed in the study area. They have been subjected to hydrothermal alterations, especially along the shear zones. Sericitization, desilicification, nametasomatism and development of spotty or dendritic manganese oxides are the most pronounced alteration features. These alterations resulted in the increase of TiO2, Al2O3, FeOt, MnO, CaO, MgO, Na2O, K2O and Cr, Zr, Rb, Y and Sr and the decrease of SiO2, P2O5, Ni, Zn, Ba and Nb. Radiometric studies indicated that the altered granites belong to high thorium, high uranium granites. The U, Th, U and Th, Th/U, Th and U-K variation diagrams suggested that magmatic processes controlled the distribution of these elements but the effect of hydrothermal alteration processes were clearly distinct. The Scanning Electron Microscope and X-ray Diffraction analyses indicated that the most important radioactive minerals include uranothorite, thorite, zircon, monazite and samarskite. Cinnabar and Mn minerals were also found. From the U, Th, Ra and K activity concentrations obtained for all the studied granitic samples, radium equivalent activity (Raeq), external hazard index (Hex), and internal hazard index (Hin), were calculated to assess the radiation hazard to human beings living in dwellings made of the studied granites. Altered monzogranites have radioactivity above the proposed acceptable level and, therefore, caution must be taken when these granites are used as building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Naby and H.Z. (2009) High and low temperature alteration of uranium andthorium minerals, Um Ara granites, south Eastern Desert, Egypt [J]. Ore Geology Reviews (in press).

  • Abd El Wahed A.A., Raslan M.F., and El Husseiny M.O. (2005) Radioactive Pegmatites of Umm Lassifa Granitic Pluton, Centeral Eastern Desert, Egypt [C]. The 9th International Mining, Petroleum, and Metallurgical Engineering Conference Faculty of Engineering, Cairo University.

  • Adams J.A.S. and Weaver C.E. (1958) Thorium to uranium ratios as indications of sedimentary processes: Example of concept of geochemical facies [J]. Bull. Am. Assoc.Petr. Geol. 42, 387–430.

    Google Scholar 

  • Ahmed N.K. (2005) Measurement of natural radioactivity in building materials in Qena City, Upper Egypt [J]. J. Environ. Radioactivity. 83, 91–99.

    Article  Google Scholar 

  • Anjos R.M, Veiga R., Soares T., Santos A., Aguiar J., Frascac M., Brage J., Uzeda D., Mangia L., Facure A., Mosquera B., Carvalho C., and Gomes P. (2005) Natural radionuclide distribution in Brazilian commercial granites [J]. Radiat. Meas. 39, 245–253.

    Article  Google Scholar 

  • Anjos R.M., Okuno E., Gomes P.R.S., Veiga R., Estellita L., Mangia L., Uzeda D., Soares T., Facure A., Brage J.A.P., Mosquera B., Carvalho C., and Santos A.M.A. (2004) Radioecology teaching: Evaluation of the background radiation levels from areas with high concentrations of radionuclides in soil [J]. Eur. J. Phys. 25, 133–144.

    Article  Google Scholar 

  • Barkar F. (1979) Trondhjemite-definition, environment and hypothesis of origin. In Trondjemite, Dacite and Related Rocks (ed. Barkar F.) [M]. pp.1–12. El Sevier, Sci. Pub. Co., Amsterdam.

    Google Scholar 

  • Bentor Y.K. (1985) The crustal evolution of the Arabo-Nubian massif with specialreference to the Sinai Peninsula [J]. Precamb. Res. 28, 1–27.

    Article  Google Scholar 

  • Beretka I. and Mathew P.I. (1985) Natural radioactivity of Australian building material, waste and by-products [J]. Journal of Health Physics. 48, 87–95.

    Article  Google Scholar 

  • Burt D.M. (1989) Compositional and phase relations among rare earth element minerals. In Geochemistry and Mineralogy of Rare-earth Elements (eds. Lipin B.K. and Mckay G.A.) [J]. Miner. Soc. Amer. 21, 257–307.

  • Cathelineau M. (1986) The hydrothermal alkali metasomatism effects on granitic rocks: Quartz dissolution and related subsolidus changes [J]. J. Petrol. 27, 945–965.

    Google Scholar 

  • Cathelineau M. (1987) U-Th-RRE mobility during albitization and quartz dissolution in granitoids: Evidence from southeast French Massif Centeral [J]. Bull. Mineral. 110, 249–259.

    Google Scholar 

  • Connor J.T. (1965) A classification of quartz-rich igneous rocks based on feldspar Ratios [J]. U.S. Geol. Surv. Prof. Pap. 258, 79–84.

    Google Scholar 

  • Cuney M., Leorty J., Valdiviezo P.A., Daziano C., Gamba M., Zarco J., Morello O., Ninci C., and Molina P. (1989) Geochemistry of the uranium mineralized Achala Granitic Complex, Argentina: Comparison with Hercynian peraluminous leucogranites of Western Europe. Metallogenesis of Uranium Deposits [M]. pp.211–232. IAEA-Tc-452/6, Vienna.

  • Cuney M., LeFort P., and Zhixiang W. (1982) U and Th geochemistry amd mineralogy in Manaslu leucogranite. In Geology of Granites and Their Metallogenetic Relations (eds. Xu K. and Tu G.) [C]. pp.853–872. Proc Symp., China.

  • Dawoud M. (2004) The Nature and Origin of U-bearing Fluids as Revealed for Zircon Alteration: Examples from the Gattarian Granites of Egypt [C]. pp.875–891. 6th International Conference on Geochemistry, Alex. Univ.

  • Debon F. and Le Fort P. (1983) A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications [J]. Bull. Min. 111, 493–510.

    Google Scholar 

  • Deer W.A., Howie R.A., and Zussman J. (1992) An Introduction to the-Rock Forming Minerals, Low-Priced Edition [M]. pp.528. ELBS, Longman.

  • Ekwere S.J. (1985) Li, F and Rb Contents and Ba/Rb and Rb/Sr Ratios as Indicators of Post-magmatic Alteration and Mineralization in the Granitic Rocks of the Banke and Ririwai Younger Granite Comlexes, North Nigeria [Z].

  • Förster H.J. (2006) Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite [J]. Lithos. 1–4, 35–55.

    Article  Google Scholar 

  • Hanson S.L., Simons W.B., Falster A.U., Foord E.E., and Lichte F.E. (1999) Proposed nomenclature for samarskite-group minerals: New data on ishikawaite and calciosamarskite [J]. Mineral. Mag. 63, 27–63.

    Article  Google Scholar 

  • Hazen R.M. and Finger L.W. (1979) Crystal structure and compressibility of zircon at high pressure [J]. American Mineralogists. 64, 157–161.

    Google Scholar 

  • Heinrich E.W. (1958) Mineralogy and Geology of Radioactive Raw Materials [M]. pp.654. McGraw Hill Comp., New York.

    Google Scholar 

  • Hughes J.M., Cameron M., and Mariano A.N. (1991) Rare-earth ordering and structural variations in natural rare-earth bearing apatite [J]. Amer. Miner. 76, 1165–1173.

    Google Scholar 

  • Hussein H.A., Ali M.M., and Ramly M.F.El (1982) A proposed new classification of the granites of Egypt [J]. J. Volcan. Geotherm. Res. 14, 187–194.

    Article  Google Scholar 

  • Krieger R. (1981) Radioactivity of construction materials [J]. Betonwerk Fertigteil Techn. 47, 468.

    Google Scholar 

  • Krisiuk E.M, Tarasov S.I., Shamov V.P., Shalak N.I., Lysachenko E.P., and Gomelsky L.G. (1971) A Study of Radioactivity in Building Materials [M]. Leningrad Research Institute for Radiation Hygiene, Leningrad.

    Google Scholar 

  • Leroy J. (1978) The Margnac and Fanay uranium deposits of La Crouzille district (western Massif Central France) [J]. Econ. Geol. 73, 1611–1634.

    Article  Google Scholar 

  • Meyer C.H. and Hemley T.T. (1967) Wall-Rock Alteration. In Geochemistry of Hydrothermal Deposits (ed. Barnes H.I.) [M]. pp.166–235. Holt, Rinehart Winston, New York.

    Google Scholar 

  • Nada A. (2004) Gamma spectroscopic analysis for estimation of natural radioactivity levels in some granitic rocks of Eastern Desert, Egypt [J]. Arab Journal of Nuclear Sciences and Applications. 37, 209–222.

    Google Scholar 

  • Nockolds S.R., Knox R.W., and Chinner G.A. (1979) Petrography for Students [M]. pp.427. Great Bretain, Fakenham Press, Norfolk.

    Google Scholar 

  • Oresegun M.O. and Babalola A.I. (1988) Annual indoor dose burden estimates in dwellings built in Nigeria with radioactive U-Th rich tailings. In Proceedings of an International Conference on Radiation Protection in Nuclear Energy [C]. pp.159–166. vol.2, 18 April, IAEA, Vienna, Austria.

    Google Scholar 

  • Pagel M. (1982) The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites from the Vosges, France [J]. Mineralogical Magazine. 46, 149–161.

    Article  Google Scholar 

  • Pointer C.M., Ashworth J.R., and Ixer R.A. (1988a) The zircon.thorite mineral group in metasomatized granite, Ririwai, Nigeria. 1. Geochemistry and metastable solid solution of thorite and coffinite [J]. Mineralogy and Petrology. 38, 245–262.

    Article  Google Scholar 

  • Pointer C.M., Ashworth J.R., and Ixer R.A. (1988b) The zircon, thorite mineral group in metasomatized granite, Ririwai, Nigeria. 2. Zoning, alteration and exsolution in zircon [J]. Mineralogy and Petrology. 39, 21–37.

    Article  Google Scholar 

  • Ragab A.I. and Gharabawi R.L.El (1989) Wadi El Hudi Migmatites, East of Aswan, Egypt: A geological study and some geotectonic implications for the Eastern Desert of Egypt [J]. Precambrian Res. 44, 67–79.

    Article  Google Scholar 

  • Raguin E. (1976) Geologie du Granite [M]. pp.275. Paris, New York, Barcelone, Milan.

    Google Scholar 

  • Rankama K. and Sahama R.L. (1955) Geochemistry [M]. pp.37. Chicago Univ. Press, Chicago.

    Google Scholar 

  • Rapp R.P. and Watson E.B. (1986) Monazite solubility and dissolution kinetics: Implication for the thorium and light rare earth chemistry of felsic magmas [J]. Contrib. Miner. Petrol. 94, 316–404.

    Article  Google Scholar 

  • Raslan M.F. (2008) Occurrence of ishikawaite (uranium-rich samarskite) in the mineralized Abu Rushied Gneiss, Southeastern Desert of Egypt [J]. International Geology Review Journal. 50, 1132–1140.

    Article  Google Scholar 

  • Rogers J.J.W. and Adams J.A.S. (1969) Uranium and Thorium. In Handbook of Geochemistry (ed. Wedepohl K.H.) [M]. VII-3, 92-B-1 to 92-0-8 and 90-B-1 to 90-0-5, Springer Verlag, Berlin.

    Google Scholar 

  • Shapiro L. and Brannock W.W. (1962) Rapid analysis of silicate, carbonate and phosphate rocks [J]. U.S. Geol. Surv. Bull. 1144A, 56.

    Google Scholar 

  • Shives R.B.K., Ford K.L., and Charoneau B.W. (1995) Application of gamma-ray spectrometric/magnetic/LF-EM surveys-Workshop Manual [J]. Geological Survey of Canada, Open File. 3061, 82.

    Google Scholar 

  • Singh S., Rani A., and Mahajan R.K. (2005) 226Ra, 232Th and 40K analysis in soil samples from areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry [J]. J. Radiat. Measur. 39, 431–439.

    Article  Google Scholar 

  • Stemprok M. (1979) Mineralized granites and their origin [J]. Episodes. 3, 20–24.

    Google Scholar 

  • Streckeisen A. (1976) To each plutonic rock its proper name [J]. Earth Sci. Rev. 12, 1–33.

    Article  Google Scholar 

  • Stuckless J.S., Nkomo I.T., Wenmer D.B., and Van Trump G. (1984) Geochemistry and uranium favourability of the postorogenic granites of the north-eastern Arabian Shield, Kingdom of Saudi Arabia [J]. Bull Fac. Earth Sci. (King Abdel Aziz Univ.). 6, 195–209.

    Google Scholar 

  • Taylor M. and Ewing R.C. (1978) The crystal structure of ThSiO4 polymorphs: Huttonite and thorite [J]. Acta Crystallographica. B34, 1074–1079.

    Google Scholar 

  • Tufail M., Mirza S.M., and Khan H.A. (1992) Natural radioactivity from building materials used in Islamabad and Rawalpindi, Pakistan [J]. The Science of the Total Environment. 121, 283–291.

    Article  Google Scholar 

  • Tzortzis M., Tsertos H., Christofides S., and Christodoulides G. (2003) Gamma radiation measurements and dose rates in commercially-used natural tiling rocks granite [J]. Journal of Environmental Radioactivity. 70, 223–235.

    Article  Google Scholar 

  • UNSCEAR (1982) Sources and Effects and Risks of Ionizing Radiations [Z]. United Nations Scientific Committee on the Effects of Atomic Radiation, UN, New York.

    Google Scholar 

  • UNSCEAR (2000) Sources and Effects of Ionizing Radiation [Z]. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York.

    Google Scholar 

  • Yu K.N., Guan Z.J., Stoks M.J., and Young E.C (1992) The assessement of natural radiation dose committed to the Hong Kong people [J]. J. Environ. Radio. 17, 31–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. El Feky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Feky, M.G., El Mowafy, A.A. & Abdel Warith, A. Mineralogy, geochemistry, radioactivity and environmental impacts of Gabal Marwa granites, southeastern Sinai, Egypt. Chin. J. Geochem. 30, 175–186 (2011). https://doi.org/10.1007/s11631-011-0499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-011-0499-1

Key words

Navigation