Skip to main content
Log in

Impact of Fin Arrangement on Heat Transfer and Melting Characteristics of Phase Change Material

  • Special Column: Recent Advances in PCMs as Thermal Energy Storage in Energy Systems
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Present work investigates the heat transfer and melting behaviour of phase change material (PCM) in six enclosures (enclosure-1 to 6) filled with paraffin wax. Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin’s surface area equal in each case. Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM. Left wall of the enclosure is maintained isothermal for the temperature values 335 K, 350 K and 365 K. Dimensionless length of the enclosure including fins is ranging between 0 and 1. Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity, melting rate, enhancement ratio, and Nusselt number. It has been found that melting time (to melt 100% of the PCM) is 60.5% less in enclosure-2 (with two fins of equal length) as compared to the enclosure-1, having no fins. Keeping the fin surface area equal, if the longer fin is placed below the shorter fin (enclosure-3), melting time is further decreased by 14.1% as compared to enclosure-2. However, among all the configurations, enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1. Based on the findings, it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM. Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure. Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area/mm2

c p :

heat capacity/J·(kg·K)−1

ER:

enhancement ratio/%

g :

gravity/m·s−2

h :

enthalpy/kJ·kg−1

k :

thermal conductivity/W·(m·K)−1

L :

length/mm

Nu :

Nusselt number

Q :

heat contest/J

T :

temperature/K

t :

time/s

V :

velocity/m·s−1

β :

thermal expansion coefficient/K−1

ρ :

density/kg·m−3

λ :

liquid fraction

i:

initial

1:

liquid

p:

pressure

s:

solid

total:

total

w:

wall

References

  1. Ismail K.A., Lino F.A., Machado P.L.O., Teggar M., Arıcı M., Alves T.A., Teles M.P., New potential applications of phase change materials: A review. Journal of Energy Storage, 2022, 53: 105202.

    Article  Google Scholar 

  2. Mondal S., Phase change materials for smart textiles - An overview. Applied Thermal Engineering, 2008, 28(11–12):1536–1550.

    Article  CAS  Google Scholar 

  3. Rajabifar B., Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. International Journal of Heat and Mass Transfer, 2015, 88: 627–635.

    Article  CAS  Google Scholar 

  4. Farahani S.D., Farahani A.D., Hajian E., Effect of PCM and porous media/nanofluid on the thermal efficiency of microchannel heat sinks. International Communication in Heat Mass and Transfer, 2021, 127: 105546.

    Article  CAS  Google Scholar 

  5. Xiao, Y., Huang, P., Wei, G., Cui, L., Xu, C., Du, X., State-of-the-art review on performance enhancement of photovoltaic/thermal system integrated with phase change materials. Journal of Energy Storage, 2022, 56: 106073.

    Article  Google Scholar 

  6. Carneiro J.O., The evaluation of the thermal behaviour of a mortar based brick masonry wall coated with TiO2 nanoparticles: An experimental assessment towards energy efficient buildings. Energy and Buildings, 2014, 81: 1–8.

    Article  Google Scholar 

  7. Said M. A., Hassan H., Impact of energy storage of new hybrid system of phase change materials combined with air-conditioner on its heating and cooling performance. Journal of Energy Storage, 2021, 36: 102400.

    Article  Google Scholar 

  8. Allouche Y., Varga S., Bouden C., Oliveira A.C., Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Applied Energy, 2017, 190: 600–611.

    Article  ADS  CAS  Google Scholar 

  9. Khanna S., Reddy K.S., Mallick T.K., Optimization of finned solar photovoltaic phase change material (finned pv pcm) system. Internatonal Journal of Thermal Sciences, 2018, 130: 313–322.

    Article  Google Scholar 

  10. El Idi M.M., Karkri M., Abdou Tankari M., A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations. International Journal of Heat Mass and Transfer, 2021, 169: 120894.

    Article  CAS  Google Scholar 

  11. Sun Z., Fan R., Yan F., Zhou T., Zheng N., Thermal management of the lithium-ion battery by the composite PCM-Fin structures. International Journal of Heat and Mass Transfer, 2019, 145: 118739

    Article  Google Scholar 

  12. Ping P., Peng R., Kong D., Chen G., Wen J., Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Conversion Management, 2018, 176: 131–146.

    Article  CAS  Google Scholar 

  13. Kabir M., Gemeda T., Preller E., Xu J., Design and development of a PCM-based two-phase heat exchanger manufactured additively for spacecraft thermal management systems. International Journal of Heat Mass and Transfer, 2021, 180: 121782.

    Article  Google Scholar 

  14. Liu C., Wu Y., Li D., Ma T., Hussein A.K., Zhou Y., Investigation of thermal and optical performance of a phase change material-filled double-glazing unit. Journal of Building Physics, 2018, 42(2): 99–119.

    Article  CAS  Google Scholar 

  15. Al-Rashed A.A., Aich W., Kolsi L., Mahian O., Hussein A.K., Borjini M.N., Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy, 2017, 19(5): 200.

    Article  ADS  Google Scholar 

  16. Qu Z.G., Li W.Q., Wang J.L., Tao W.Q., Passive thermal management using metal foam saturated with phase change material in a heat sink. International communication in Heat Mass and Transfer, 2012, 39(10): 1546–1549.

    Article  CAS  Google Scholar 

  17. Ren Q., Meng F., Guo P., A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. International Journal of Heat and Mass Transfer, 2018, 121: 1214–1228.

    Article  Google Scholar 

  18. Akshayveer K.A., Singh A.P., Singh O.P., Effect of novel PCM encapsulation designs on electrical and thermal performance of a hybrid photovoltaic solar panel. Solar Energy, 2020, 205: 320–333.

    Article  ADS  Google Scholar 

  19. Praveen B., Suresh S., Thermal performance of micro-encapsulated PCM with LMA thermal percolation in TES based heat sink application. Energy Conversion Management, 2019, 185: 75–86.

    Article  CAS  Google Scholar 

  20. Arici M., Tütüncü E., Campo A., Numerical investigation of melting of paraffin wax dispersed with CuO nanoparticles inside a square enclosure. Heat Transfer Research, 2018, 49(9): 847–863.

    Article  Google Scholar 

  21. Nitsas M., Koronaki I.P., Performance analysis of nanoparticles-enhanced PCM: An experimental approach. Thermal Science Engineering Progress, 2021, 25: 100963.

    Article  CAS  Google Scholar 

  22. Wang Q., Zhou D., Chen Y., Eames P., Wu Z., Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites. Renewable Energy, 2020, 147: 1131–1138.

    Article  CAS  Google Scholar 

  23. Mat S., Al-Abidi A.A., Sopian K., Sulaiman M.Y., Mohammad A.T., Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy Conversion Management, 2013, 74: 223–236.

    Article  CAS  Google Scholar 

  24. Li Z., Wu Z.G., Analysis of HTFs, PCMs and fins effects on the thermal performance of shell-tube thermal energy storage units. Solar Energy, 2015, 122: 382–395.

    Article  ADS  CAS  Google Scholar 

  25. Arıcı M., Tütüncü E., Karabay H., Campo A., Investigation on the melting process of phase change material in a square cavity with a single fin attached at the center of the heated wall. The European Physical Journal Applied Physics, 2018, 83(1): 10902.

    Article  ADS  Google Scholar 

  26. Ji C., Qin Z., Low Z., Dubey S., Choo F.H., Duan F., Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Applied Thermal Engineering, 2019, 129: 269–279.

    Article  Google Scholar 

  27. Safari V., Abolghasemi H., Kamkari B., Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins. Renewable Energy, 2021, 174: 102–121.

    Article  Google Scholar 

  28. Guo J., Liu Z., Yang B., Yang X., Yan J., Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube. Renewable Energy, 2021, 183: 406–422.

    Article  Google Scholar 

  29. Masoumpour-Samakoush M., Miansari M., Ajarostaghi S. S. M., Arıcı M., Impact of innovative fin combination of triangular and rectangular fins on melting process of phase change material in a cavity. Journal of Energy Storage, 2022, 45: 103545.

    Article  Google Scholar 

  30. Skaalum J., Groulx D., Heat transfer comparison between branching and non-branching fins in a latent heat energy storage system. International Journal of Thermal Science, 2020, 152: 106331.

    Article  Google Scholar 

  31. Sheikholeslami M., Haq R., Shafee A., Li Z., Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. International Journal of Heat Mass and Transfer, 2019, 130:1322–1342.

    Article  CAS  Google Scholar 

  32. Nakhchi M.E., Esfahani J.A., Improving the melting performance of PCM thermal energy storage with novel stepped fins. Journal of Energy Storage, 2020, 30: 101424.

    Article  Google Scholar 

  33. Groulx D., Biwole P.H., Bhouri M., Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement. International Journal of Thermal Science, 2019, 151:106260.

    Article  Google Scholar 

  34. Khan L.A., Khan M.M., Ahmed H.F., Irfan M., Brabazon D., Ahad I.U., Dominant roles of eccentricity, fin design, and nanoparticles in performance enhancement of latent thermal energy storage unit. Journal of Energy Storage, 2021, 43: 103181.

    Article  Google Scholar 

  35. Elmaazouzi Z., Laasri I.A., Gounni A., El Alami M., Bennouna E.G., Enhanced thermal performance of finned latent heat thermal energy storage system: fin parameters optimization. Journal of Energy Storage, 2021, 43: 103116.

    Article  Google Scholar 

  36. Meghari Z., Numerical simulation of a phase change material in a spherical capsule with a hollow fin. Journal of Energy Storage, 2021, 43: 103024. doi: https://doi.org/10.1016/j.est.2021.103024.

    Article  Google Scholar 

  37. Ghachem K., Hussein A.K., Kolsi L., Younis O., CNT-water nanofluid magneto-convective heat transfer in a cubical cavity equipped with perforated partition. The European Physical Journal Plus, 2021, 136: 1–2.

    Article  Google Scholar 

  38. Arshad A., Ali H.M., Yan W.M., Hussein A.K., Ahmadlouydarab M., An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Applied Thermal Engineering, 2018, 132: 52–66.

    Article  CAS  Google Scholar 

  39. Li Z., Hussein A. K., Younis O., Afrand M., Feng S., Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. International Communications in Heat and Mass Transfer, 2020, 116: 104650.

    Article  CAS  Google Scholar 

  40. Arıcı M., Tütüncü E., Yıldız Ç., Li D., Enhancement of PCM melting rate via internal fin and nanoparticles. International Journal of Heat and Mass Transfer, 2020, 156: 119845.

    Article  Google Scholar 

  41. Arıcı M., Tütüncü E., Kan M., Karabay H., Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls. International Journal of Heat and Mass Transfer, 2017, 104: 7–17.

    Article  Google Scholar 

  42. Li Z.R., Hu N., Fan L.W., Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Materials, 2023, 55: 727–753.

    Article  CAS  Google Scholar 

  43. Tan S., Zhang X. Progress of research on phase change energy storage materials in their thermal conductivity. Journal of Energy Storage, 2023, 61: 106772.

    Article  Google Scholar 

  44. Diaconu B.M., Cruceru M., Anghelescu L., A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization. Journal of Energy Storage, 2023, 61: 106830.

    Article  Google Scholar 

  45. Kamkari B., Shokouhmand H., Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. International Journal of Heat and Mass Transfer, 2014, 78: 839–851.

    Article  Google Scholar 

  46. Olfian H., Ajarostaghi S.S.M., Farhadi M., Ramiar A., Melting and solidification processes of phase change material in evacuated tube solar collector with u-shaped spirally corrugated tube. Applied Thermal Engineering, 2021, 182: 116149.

    Article  Google Scholar 

  47. Voller V.R., Prakash C., A Fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems. International Jounal of Heat Mass Transfer, 1978, 30(8): 1709–1719.

    Article  Google Scholar 

  48. Rabienataj Darzi A.A., Jourabian M., Farhadi M., Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus. Energy Conversion and Management, 2016, 118: 253–263.

    Article  CAS  Google Scholar 

  49. Chen S.B., Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins. Case Studies of Thermal Engineering, 2021, 25:100939.

    Article  Google Scholar 

  50. Bouzennada T., Mechighel F., Ismail T., Kolsi L., Ghachem K., Heat transfer and fluid flow in a PCM-filled enclosure: Effect of inclination angle and mid-separation fin. Internaltional Communication in Heat Mass Transfer, 2021, 124: 105280.

    Article  CAS  Google Scholar 

  51. Wang G., Feng L., Altanji M., Sharma K., Sooppy Nisar K., Khorasani S., Proposing novel ‘L’ shaped fin to boost the melting performance of a vertical PCM enclosure. Case Studies of Thermal Engineering, 2021, 28: 101465.

    Article  Google Scholar 

  52. Luo X., Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins. Journal of Energy Storage, 2021, 45: 103780.

    Article  Google Scholar 

  53. Peng B., Qiu M., Xu N., Zhou Y., Sheng W., Su F., Optimum orthogonally structured fins in charging enhancement of phase change materials (PCMs): PCMs’ thermophysical properties effects. International Journal of Thermal Sciences, 2022, 184: 108005.

    Article  Google Scholar 

  54. İzgi B., Effect of fins on melting of phase change material in a closed vertical cylinder under microgravity. Applied Thermal Engineering, 2023, 220: 119703.

    Article  Google Scholar 

  55. Yang Y., Pu W., Yao Z., Zhang Q., Wang J., Han D., Experimental and numerical investigations on the intermittent heat transfer performance of rectangular cavity plate fin phase change material-based heat sink. Journal of Energy Storage, 2023, 60: 106607.

    Article  Google Scholar 

  56. Temel Ü.N., Kilinc F., Experimental investigation of the variable fin length on melting performance in a rectangular enclosure containing phase change material. International Communication in Heat Mass Transfer, 2023, 142: 106658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh K. Prajapati.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uniyal, A., Prajapati, Y.K. Impact of Fin Arrangement on Heat Transfer and Melting Characteristics of Phase Change Material. J. Therm. Sci. 33, 435–456 (2024). https://doi.org/10.1007/s11630-024-1925-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1925-0

Keywords

Navigation