Skip to main content
Log in

Performance Improvement of Two-Phase Steam Ejector based on CFD Techniques, Response Surface Methodology and Genetic Algorithm

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The steam ejector is a crucial component in the waste heat recovery system. Its performance determines the amount of recovered heat and system efficiency. However, poor ejector performance has always been the main bottleneck for system applications. Therefore, this study proposes an optimization methodology to improve the steam ejector’s performance by utilizing computational fluid dynamics (CFD) techniques, response surface methodology (RSM), and genetic algorithm (GA). Firstly, a homogeneous equilibrium model (HEM) was established to simulate the two-phase flow in the steam ejector. Then, the orthogonal test was presented to the screening of the key decision variables that have a significant impact on the entrainment ratio (ER). Next, the RSM was used to fit a response surface regression model (RSRM). Meanwhile, the effect of the interaction of geometric parameters on the performance of the steam ejector was revealed. Finally, GA was employed to solve the RSRM’s global optimal ER value. The results show that the RSRM exhibits a good fit for ER (R2=0.997). After RSM and GA optimization, the maximum ejector efficiency is 27.94%, which is 48.38% higher than the initial ejector of 18.83%. Furthermore, the optimized ejector efficiency is increased by 46.4% on average under off-design conditions. Overall, the results reveal that the combination of CFD, RSM, and GA presents excellent reliability and feasibility in the optimization design of a two-phase steam ejector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area/mm2

c :

Speed of sound/m·s−1

c p :

Specific heat/J·kg−1·K−1

D :

Diameter/mm

h :

Enthalpy/kJ·kg−1

K :

Turbulent kinetic energy/m2·s−2

k :

Thermal conductivity/W·m−1 ·K−1

L :

Length/mm

P :

Pressure/MPa

q :

Mass flow rate/g·s−1

\({{\dot S}_\phi}\) :

Source term

T :

Temperature/K

\({\vec u}\) :

Velocity vector components/m·s−1

α :

Angle/(°)

ρ :

Density/kg·m−3

τ :

Viscous stress/N·m−2

η :

Coefficient

Γ :

Diffusion coefficient/m2·s−1

μ :

Dynamic viscosity/kg·m−1·s−1

μ T :

Turbulent viscosity/kg·m−1·s−1

b:

Back flow

diff:

Diffuser

eff:

Effective

mix:

Mixing chamber

ne:

Nozzle exist

p:

Primary flow

s:

Secondary flow

th:

Throat

φ :

Arbitrary scalar

ANOVA:

Analysis of variance

AR:

Area ratio

CCD:

Central composite design

CFD:

Computational fluid dynamics

DOF:

Degree of freedom

ER:

Entrainment ratio

GA:

Genetic algorithm

HEM:

Homogeneous equilibrium model

MS:

Mean squared error

NXP:

Nozzle exit position

RSM:

Response surface methodology

RSRM:

Response surface regression model

UDF:

User-defined functions

UDS:

User-defined scalars

References

  1. Han Y., Sun Y.Y., Wu J.J., An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants. Energy, 2020, 208: 118372.

    Article  Google Scholar 

  2. Li D., Zhao H., Kong F., et al., Application of ejector in solid oxide fuel cell anode circulation system. Journal of Thermal Science, 2022, 31: 634–649.

    Article  ADS  Google Scholar 

  3. Bai T., Liu Y., Yan G., et al., Theoretical performance analysis of an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation. Journal of Thermal Science, 2022, 31: 1367–1379.

    Article  ADS  Google Scholar 

  4. Yang X., Long X., Yao X., Numerical investigation on the mixing process in a steam ejector with different nozzle structures. International Journal of Thermal Sciences, 2012, 56: 95–106.

    Article  CAS  Google Scholar 

  5. Zhu Y.H., Cai W.J., Wen C., Li Y., Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 2009, 29: 898–905.

    Article  Google Scholar 

  6. Varga S., Oliveira A.C., Diaconu B., Influence of geometrical factors on steam ejector performance — A numerical assessment. International Journal of Refrigeration, 2009, 32: 1694–1701.

    Article  Google Scholar 

  7. Chen W.X., Chong D.T., Yan J.J., Liu J.P., The numerical analysis of the effect of geometrical factors on natural gas ejector performance. Applied Thermal Engineering, 2013, 59: 21–29.

    Article  Google Scholar 

  8. Banasiak K., Hafner A., Andresen T., Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. International Journal of Refrigeration, 2012, 35: 1617–1625.

    Article  CAS  Google Scholar 

  9. Chen Z., Zhao H.X., Kong F.C., Liu G.D., Wang L., Lai Y.H., Synergistic effect of adjustable ejector structure and operating parameters in solar-driven ejector refrigeration system. Solar Energy, 2023, 250: 295–311.

    Article  ADS  Google Scholar 

  10. Wu Y.F., Zhao H.X., Zhang C.Q., Wang L., Han J.T., Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy, 2018, 151: 79–93.

    Article  Google Scholar 

  11. He Y., Deng J.Q., Li Y.F., Zhang X.P., Synergistic effect of geometric parameters on CO2 ejector based on local exergy destruction analysis. Applied Thermal Engineering, 2021, 184: 116256.

    Article  CAS  Google Scholar 

  12. Song W.L., Shen X.S., Huang Y.L., Jiang P.X., Zhu Y.H., Fuel ejector design and optimization for solid oxide fuel cells using response surface methodology and multi-objective genetic algorithm. Applied Thermal Engineering, 2023, 232: 121067.

    Article  CAS  Google Scholar 

  13. Li Y.F., Deng J.Q., He Y., Numerical study on the interaction of geometric parameters of a transcritical CO2 two-phase ejector using response surface methodology and genetic algorithm. Applied Thermal Engineering, 2022, 214: 118799.

    Article  CAS  Google Scholar 

  14. Palacz M., Smolka J., Nowak A.J., Banasiak K., Hafner A., Shape optimisation of a two-phase ejector for CO2 refrigeration systems. International Journal of Refrigeration, 2017, 74: 212–223.

    Article  CAS  Google Scholar 

  15. Gupta P., Kumar P., Rao S.M.V., Artificial neural network based shape optimization of supersonic ejectors in the critical flow regime. Applied Thermal Engineering, 2022, 216: 119046.

    Article  Google Scholar 

  16. Ariafar K., Buttsworth D., Sharifi N., Malpress R., Ejector primary nozzle steam condensation: Area ratio effects and mixing layer development. Applied Thermal Engineering, 2014, 71: 519–527.

    Article  Google Scholar 

  17. Li Z.M., Wang J.L., Zheng H.T., CFD simulation of the supersonic steam ejector. ASME 2010 4th International Conference on Energy Sustainability, 2010. DOI: https://doi.org/10.1115/ES2010-90123

  18. Wang X.D., Dong J.L., Wang T., Tu J.Y., Numerical analysis of spontaneously condensing phenomena in nozzle of steam-jet vacuum pump. Vacuum, 2012, 86: 861–866.

    Article  CAS  ADS  Google Scholar 

  19. Varga S., Lebre P.M.S., Oliveira A.C., CFD study of a variable area ratio ejector using R600a and R152a refrigerants. International Journal of Refrigeration, 2013, 36: 157–165.

    Article  CAS  Google Scholar 

  20. Giacomelli F., Biferi G., Mazzelli F., Milazzo A., CFD modeling of the supersonic condensation inside a steam ejector. Energy Procedia, 2016, 101: 1224–1231.

    Article  Google Scholar 

  21. Yu M.H., Zhao H.X., Wang X., Han J.T., Lai Y.H, Investigation on the performance of the pump-free double heat source ejector refrigeration system with R1234yf. Journal of Thermal Science, 2020, 31: 1452–1464.

    Article  ADS  Google Scholar 

  22. Ameur K., Aidoun Z., Ouzzane M., Modeling and numerical approach for the design and operation of two-phase ejectors. Applied Thermal Engineering, 2016, 109: 809–818.

    Article  Google Scholar 

  23. Lucas C., Rusche H., Schroeder A., Koehler J., Numerical investigation of a two-phase CO2 ejector. International Journal of Refrigeration, 2014, 43: 154–166.

    Article  CAS  Google Scholar 

  24. Smolka J., Bulinski Z., Fic A., Nowak A.J., Banasiak K., Hafner A., A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach. Applied Mathematical Modelling, 2013, 37: 1208–1224.

    Article  MathSciNet  Google Scholar 

  25. Bell I.H., Wronski J., Quoilin S., Lemort V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Industrial & Engineering Chemistry Research, 2014, 53: 2498–2508.

    Article  CAS  Google Scholar 

  26. Yu M.H., Wang C., Wang L., Zhao H.X., Optimization design and performance evaluation of R1234yf ejectors for ejector-based refrigeration systems. Entropy (Basel), 2022, 24(11): 1632.

    Article  PubMed  ADS  Google Scholar 

  27. Bartosiewicz Y., Aidoun Z., Desevaux P., Mercadier Y., Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 2005, 26: 56–70.

    Article  Google Scholar 

  28. Colarossi M., Trask N., Schmidt D.P., Bergander M.J., Multidimensional modeling of condensing two-phase ejector flow. International Journal of Refrigeration, 2012, 35: 290–299.

    Article  CAS  Google Scholar 

  29. Pianthong K., Seehanam W., Behnia M., Sriveerakul T., Aphornratana S., Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management, 2007, 48: 2556–2564.

    Article  CAS  Google Scholar 

  30. Elbel S., Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration, 2011, 34: 1545–1561.

    Article  CAS  Google Scholar 

  31. Chen Y.M., Sun C.Y., Experimental study of the performance characteristics of a steam-ejector refrigeration system. Experimental Thermal and Fluid Science, 1997, 15(4): 384–394.

    Article  CAS  Google Scholar 

  32. Arjmandi H., Amiri P., Saffari Pour M., Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress, 2020, 18: 100514.

    Article  Google Scholar 

  33. Sun X., Kim S., Yang S.D., Kim H.S., Yoon J.Y., Multi-objective optimization of a Stairmand cyclone separator using response surface methodology and computational fluid dynamics. Powder Technology, 2017, 320: 51–65.

    Article  CAS  Google Scholar 

  34. Elsayed K., Lacor C., Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, 2011, 212: 115–133.

    Article  CAS  Google Scholar 

  35. Liu G., Zhao H., Wang Z., et al., Performance study and multi-objective optimization of a two-temperature co2 refrigeration system with economizer based on energetic, exergetic and economic analysis. Journal of Thermal Science, 2022, 31: 1416–1433.

    Article  CAS  ADS  Google Scholar 

  36. Li F.L., Li R.G., Li X.C., Tian Q., Experimental investigation on a R134a ejector refrigeration system under overall modes. Applied Thermal Engineering, 2018, 137: 784–791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhao.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhao, H., Zhang, X. et al. Performance Improvement of Two-Phase Steam Ejector based on CFD Techniques, Response Surface Methodology and Genetic Algorithm. J. Therm. Sci. 33, 675–695 (2024). https://doi.org/10.1007/s11630-024-1923-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1923-2

Keywords

Navigation