Skip to main content
Log in

Experimental and Numerical Investigations of Shock-Wave Boundary Layer Interactions in a Highly Loaded Transonic Compressor Cascade

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Experimental and numerical investigations were conducted to investigate the variations of shock-wave boundary layer interaction (SBLI) phenomena in a highly loaded transonic compressor cascade with Mach numbers. The schlieren technique was used to observe the shock structure in the cascade and the pressure tap method to measure the pressure distribution on the blade surface. The unsteady pressure distribution on blade surface was measured with the fast-response pressure-sensitive paint (PSP) technique to obtain the unsteady pressure distribution on the whole blade surface and to capture the shock oscillation characteristics caused by SBLI. In addition, the Reynolds Averaged Navier Stokes simulations were used to compute the three-dimensional steady flow field in the transonic cascade. It was found that the shock wave patterns and behaviors are affected evidently with the increase in incoming Mach number at the design flow angle, especially with the presence of the separation bubble caused by SBLI. The time-averaged pressure distribution on the blade surface measured by PSP technique showed a symmetric pressure filed at Mach numbers of 0.85, while the pressure field on the blade surface was an asymmetric one at Mach numbers of 0.90 and 0.95. The oscillation of the shock wave was closely with the flow separation bubble on the blade surface and could transverse over nearly one interval of the pressure taps. The oscillation of the shock wave may smear the pressure jump phenomenon measured by the pressure taps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Chord length/mm

C p :

Static pressure coefficient

D m :

Oxygen diffusion coefficient

H :

Incompressible-shape parameter

h :

Coating thickness/mm

I :

Luminescence intensity

P :

Static pressure/Pa

P t :

Total pressure/Pa

s :

Span length/mm

t :

Pitch length/mm

Z :

Blade number

β 1 :

Inlet flow angle/(°)

β s :

Stagger angle/(°)

δ*:

Displacement thickness/mm

τ diff :

Oxygen diffusion time

ω :

Total pressure loss coefficient

1:

Uniform inlet conditions

2:

Uniform outlet conditions

ref:

Reference conditions

References

  1. Gaitonde D.V., Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80–99.

    Article  Google Scholar 

  2. Clemens N.T., Narayanaswamy V., Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46: 469–492.

    Article  ADS  MathSciNet  Google Scholar 

  3. Ferri A., Experimental results with airfoils tested in the high-speed tunnel at Guidonia. 1940, NACA-TM-946.

  4. Dolling D.S., Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA Journal, 2001, 39(8): 1517–1531.

    Article  ADS  Google Scholar 

  5. Schreiber H.A., Starken H., Experimental cascade analysis of a transonic compressor rotor blade section. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 1984, 106(2): 288–294.

    Article  Google Scholar 

  6. Hilgenfeld L., Fottner L., Experimental investigation of turbulence structures in a highly loaded transonic compressor cascade with shock/laminar boundary layer interactions. Engineering Turbulence Modelling and Experiments 5, 2002, pp. 779–788. DOI: https://doi.org/10.1016/B978-008044114-6/50075-2.

    Article  Google Scholar 

  7. Flaszynski P., Doerffer P., Szwaba R., Kaczynski P., Piotrowicz M., Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. Journal of Thermal Science, 2015, 24(6): 510–515.

    Article  ADS  Google Scholar 

  8. Klinner J., Hergt A., Grund S., Willert C.E., High-speed PIV of shock boundary layer interactions in the transonic buffet flow of a compressor cascade. Experiments in Fluids, 2021, 62(3): 1–19.

    Article  Google Scholar 

  9. Hergt A., Klinner J., Grund S., Willert C., Steinert W., Beversdorff M., On the importance of transition control at transonic compressor blades. Journal of Turbomachinery, 2021, 143(3): 031007.

    Article  Google Scholar 

  10. Klinner J., Hergt A., Grund S., Willert C.E., Experimental investigation of shock-induced separation and flow control in a transonic compressor cascade. Experiments in Fluids, 2019, 60(6): 1–18.

    Article  Google Scholar 

  11. Szulc O., Doerffer P., Flaszynski P., Suresh T., Numerical modelling of shock wave-boundary layer interaction control by passive wall ventilation. Computers & Fluids, 2020, 200: 104435.

    Article  MathSciNet  Google Scholar 

  12. Kim S.D., Kwon C.O., Song D.J., Comparison of turbulence models in shock-wave/boundary-layer interaction. KSME International Journal, 2004, 18(1): 153–166.

    Article  Google Scholar 

  13. Piotrowicz M., Flaszyński P., Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile. Journal of Physics: Conference Series, 2016, 760(1): 012023. DOI: https://doi.org/10.1088/1742-6596/760/1/012023.

    Google Scholar 

  14. Piotrowicz M., Flaszyński P., Doerffer P., Investigations of shock wave boundary layer interaction on suction side of compressor profile. Journal of Physics: Conference Series, 2014, 530(1): 012068. DOI: https://doi.org/10.1088/1742-6596/530/1/012068.

    Google Scholar 

  15. Wang Y.G., Rao A.G., Eitelberg G., Study of shock wave control by suction & blowing on a highly-loaded transonic compressor cascade. International Journal of Turbo & Jet-Engines, 2013, 30(1): 79–90.

    ADS  Google Scholar 

  16. Hu W.B., Hickel S., Van Oudheusden B.M., Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step. Journal of Fluid Mechanics, 2021, 915: A107.

    Article  ADS  MathSciNet  Google Scholar 

  17. Dussauge J.P., Piponniau S., Shock/boundary-layer interactions: Possible sources of unsteadiness. Journal of Fluids and Structures, 2008, 24(8): 1166–1175.

    Article  ADS  Google Scholar 

  18. Touber E., Sandham N.D., Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. Journal of Fluid Mechanics, 2011, 671: 417–465.

    Article  ADS  Google Scholar 

  19. Ligrani P.M., Cox M., Goethals K., Spatial coherence of low-frequency unsteadiness associated with a normal shock wave. Aerospace Science and Technology, 2021, 112: 106637.

    Article  Google Scholar 

  20. Brusniak L., Dolling D.S., Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. Journal of Fluid Mechanics, 1994, 273: 375–409.

    Article  ADS  Google Scholar 

  21. Priebe S., Martin M.P., Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1–49.

    Article  ADS  Google Scholar 

  22. Dussauge J.P., Dupont P., Debiève J.F., Unsteadiness in shock wave boundary layer interactions with separation. Aerospace Science and Technology, 2006, 10(2): 85–91.

    Article  Google Scholar 

  23. Lee B.H.K., Self-sustained shock oscillations on airfoils at transonic speeds. Progress in Aerospace Sciences, 2001, 37(2): 147–196.

    Article  ADS  Google Scholar 

  24. Uchida K., Sugioka Y., Kasai M., Saito Y, Nonomura T., Asai K., Nakakita K., Nishizaki Y., Shibata Y., Sonoda S., Analysis of transonic buffet on ONERA-M4 model with unsteady pressure-sensitive paint. Experiments in Fluids, 2021, 62(6): 134.

    Article  ADS  Google Scholar 

  25. Running C.L., Juliano T.J., Global skewness and coherence for hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint. Aerospace, 2021, 8(5): 123.

    Article  Google Scholar 

  26. Watanabe T., Azuma T., Uzawa S., Himeno T., Inoue C., Unsteady pressure measurement on oscillating blade in transonic flow using fast-response pressure-sensitive paint. Journal of Turbomachinery, 2018, 140(6): 061003.

    Article  Google Scholar 

  27. Gan J., Watanabe T., Himeno T., Effect of shock wave behavior on unsteady aerodynamic characteristics of oscillating transonic compressor cascade. Journal of Engineering for Gas Turbines and Power, 2022, 144(1): 011025.

    Article  Google Scholar 

  28. Liu T., Sullivan J.P., Asai K., Klein C., Egami Y., Pressure and temperature sensitive paints. Berlin, 2005.

  29. Wilcox D.C., Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, 26(11): 1299–1310.

    Article  ADS  MathSciNet  Google Scholar 

  30. Mirjalily S.A.A., Lambda shock behaviors of elliptic supersonic jets; a numerical analysis with modification of RANS turbulence model. Aerospace Science and Technology, 2021, 112: 106613.

    Article  Google Scholar 

  31. Babinsky H., Harvey J.K., Shock wave-boundary-layer interactions. Cambridge, New York, 2011.

  32. Delery J., Analysis of the separation due to shock-wave-turbulent boundary-layer interaction in transonic flow. Recherche Aerospatiale, 1978, (6): 305–320.

  33. Holden H.A., Babinsky H., Separated shock-boundary-layer interaction control using streamwise slots. Journal of Aircraft, 2005, 42(1): 166–171.

    Article  Google Scholar 

  34. Babinsky H., Ogawa H., SBLI control for wings and inlets. Shock Waves, 2008, 18(2): 89–96.

    Article  ADS  Google Scholar 

  35. Lam K., Li J.Y., Chan K.T., So R.M.C., Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number. Journal of Fluids and Structures, 2003, 17(5): 665–679.

    Article  ADS  Google Scholar 

  36. Blackerby W.T., Cahill J.F., High Reynolds number tests of a C-141A aircraft semispan model to investigate shock-induced separation. NASA, 1975.

  37. Gibb J., The cause and cure of periodic flows at transonic speeds. Cranfield University (United Kingdom), England, 1988.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by National Science and Technology Major Project (2017-II-0007-0021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penghua Guo or Jingyin Li.

Ethics declarations

GUO Penghua is an editorial board member for Journal of Thermal Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Li, K., Guo, P. et al. Experimental and Numerical Investigations of Shock-Wave Boundary Layer Interactions in a Highly Loaded Transonic Compressor Cascade. J. Therm. Sci. 33, 158–171 (2024). https://doi.org/10.1007/s11630-023-1929-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1929-1

Keywords

Navigation