Skip to main content
Log in

Experimental and Numerical Analysis of a PCM-Integrated Roof for Higher Thermal Performance of Buildings

  • Special Column: Recent Advances in PCMs as Thermal Energy Storage in Energy Systems
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) designate materials able to store latent heat. PCMs change state from solid to liquid over a defined temperature range. This process is reversible and can be used for thermo-technical purposes. The present paper aims to study the thermal performance of an inorganic eutectic PCM integrated into the rooftop slab of a test room and analyze its potential for building thermal management. The experiment is conducted in two test rooms in Antofagasta (Chile) during summer, fall, and winter. The PCM is integrated into the rooftop of the first test room, while the roof panel of the second room is a sealed air cavity. The work introduces a numerical model, which is built using the finite difference method and used to simulate the rooms’ thermal behavior. Several thermal simulations of the PCM room are performed for other Chilean locations to evaluate and compare the capability of the PCM panel to store latent heat thermal energy in different climates. Results show that the indoor temperature of the PCM room in Antofagasta varies only 21.1°C±10.6°C, while the one of the air-panel room varies 28.3°C±18.5°C. Under the experiment’s conditions, the PCM room’s indoor temperature observes smoother diurnal fluctuations, with lower maximum and higher minimum indoor temperatures than that of the air-panel room. Thermal simulations in other cities show that the PCM panel has a better thermal performance during winter, as it helps to maintain or increase the room temperature by some degrees to reach comfort temperatures. This demonstrates that the implementation of such PCM in the building envelope can effectively reduce space heating and cooling needs, and improve indoor thermal comfort in different climates of Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cp :

Specific heat capacity/J·(kg·K)−1

h :

Coefficient of convection/W·(m2·K)−1

k :

Thermal conductivity/W·(m·K)−1

L :

Length of the panel/m

q :

Irradiation/W·m−2

T :

Temperature/°C

t :

Time

x :

System abscise/m

α :

Absorptivity

ε :

Emissivity

ρ :

Density/kg·m−3

σ :

Stefan-Boltzmann constant/W·m−2·K−1

air:

Air in the panel

i :

Volume cell number

in:

Inside

m :

Correspondent material

o:

Outside

PCM:

PCM in the panel

s:

Sun

si:

Inner surface

sky:

Sky

so:

Outer surface

∞:

Outside ambient air

f :

Implicit coefficient

Gr :

Grashoff Number

Nu :

Nusselt Number

Pr :

Prandtl Number

Re :

Reynolds Number

References

  1. Ministry of Energy, Informe Balance Nacional de Energía 2020, Santiago, Chile, 2022. https://energia.gob.cl/sites/default/files/documentos/2022_informe_anual_bne_2020.pdf.

  2. InData SpA, CDT, Usos de energia de los hogares de Chile 2018. Informe Final, Santiago, Chile, 2019. https://www.energia.gob.cl/sites/default/files/documentos/informe_final_caracterizacion_residencial_2018.pdf.

  3. Simon F., Ordoñez J., Girard A., Parrado C., Modelling energy use in residential buildings: How design decisions influence final energy performance in various Chilean climates. Indoor and Built Environment, 2019, 28: 533–551. https://doi.org/10.1177/1420326X18792661.

    Article  Google Scholar 

  4. Chan A., Energy and environmental performance of building facades integrated with phase change material in subtropical Hong Kong. Energy and Buildings, 2011, 43: 2947–2955. https://doi.org/10.1016/j.enbuild.2011.07.021.

    Article  Google Scholar 

  5. Nghana B., Tariku F., Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Building and Environment, 2016, 99: 221–238. https://doi.org/10.1016/j.buildenv.2016.01.023.

    Article  Google Scholar 

  6. Cabeza L.F., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O., Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, 2007, 39: 113–119. https://doi.org/10.1016/j.enbuild.2006.03.030.

    Article  Google Scholar 

  7. Baetens R., Jelle B.P., Gustavsen A., Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, 2010, 42: 1361–1368. https://doi.org/10.1016/j.enbuild.2010.03.026.

    Article  Google Scholar 

  8. Barreneche C., Navarro M.E., Fernández A.I., Cabeza L.F., Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. Applied Energy, 2013, 109: 428–432. https://doi.org/10.1016/j.apenergy.2012.12.055.

    Article  ADS  CAS  Google Scholar 

  9. Mandilaras I.D., Kontogeorgos D.A., Founti M.A., A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components. Renewable Energy, 2015, 76: 790–804. https://doi.org/10.1016/j.renene.2014.11.078.

    Article  Google Scholar 

  10. Kośny J., PCM-Enhanced building components: An application of phase change materials in building envelopes and internal structures. Cham: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-14286-9.

    Book  Google Scholar 

  11. Chandel S.S., Agarwal T., Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews, 2017, 67: 581–596. https://doi.org/10.1016/j.rser.2016.09.070.

    Article  CAS  Google Scholar 

  12. Athienitis K., Liu C., Hawes D., Banu D., Feldman D., Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment, 1997, 32(5): 405–410. https://doi.org/10.1016/S0360-1323(97)00009-7.

    Article  Google Scholar 

  13. Evola G., Marletta L., Sicurella F., A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment, 2013, 59: 517–527. https://doi.org/10.1016/j.buildenv.2012.09.021.

    Article  Google Scholar 

  14. Castell A., Martorell I., Medrano M., Pérez G., Cabeza L.F., Experimental study of using PCM in brick constructive solutions for passive cooling. Energy and Buildings, 2010, 42: 534–540. https://doi.org/10.1016/j.enbuild.2009.10.022.

    Article  Google Scholar 

  15. Kosny J., Fallahi A., Shukla N., Kossecka E., Ahbari R., Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations. Solar Energy, 2014, 108: 164–177. https://doi.org/10.1016/j.solener.2014.05.007.

    Article  ADS  Google Scholar 

  16. Xu T., Chen Q., Zhang Z., Gao X., Huang G., Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Building and Environment, 2016, 104: 172–177. https://doi.org/10.1016/j.buildenv.2016.05.003.

    Article  Google Scholar 

  17. Akeiber H., Nejat P., Majid M.Z.A., Wahid M.A., Jomehzadeh F., Famileh I.Z., Calautit J.K., Hughes B.R., Zaki S.A., A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 2016, 60: 1470–1497. https://doi.org/10.1016/j.rser.2016.03.036.

    Article  Google Scholar 

  18. Zhang Y., Zhou G., Lin K., Zhang Q., Di H., Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment, 2007, 42: 2197–2209. https://doi.org/10.1016/j.buildenv.2006.07.023.

    Article  Google Scholar 

  19. Fatih Demirbas M., Thermal energy storage and phase change materials: An overview. Energy Sources, Part B: Economics, Planning, and Policy, 2006, 1: 85–95. https://doi.org/10.1080/009083190881481.

    Article  Google Scholar 

  20. Jin X., Zhang S., Xu X., Zhang X., Effects of PCM state on its phase change performance and the thermal performance of building walls. Building and Environment, 2014, 81: 334–339. https://doi.org/10.1016/j.buildenv.2014.07.012.

    Article  Google Scholar 

  21. Rodríguez-Ubinas E., Ruiz-Valero L., Vega S., Neila J., Applications of phase change material in highly energy-efficient houses. Building and Environment, 2012, 50: 49–62. https://doi.org/10.1016/j.enbuild.2012.03.018.

    Article  Google Scholar 

  22. Rodríguez-Ubiñas E., Ruíz-Valero L., Sánchez S.V., Neila González F.J., Latent heat thermal energy storage systems in lightweight construction: Review of PCM applications in solar decathlon houses. WIT Transactions on Ecology and the Environment, 2011, 150: 935–946. https://doi.org/10.2495/SDP110781.

    Article  Google Scholar 

  23. Yu X., Chang J., Huang R., Huang Y., Lu Y., Li Z., Wang L., Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: A comparative study. Applied Thermal Engineering, 2021, 186: 116527. https://doi.org/10.1016/j.applthermaleng.2020.116527.

    Article  Google Scholar 

  24. Cui Y., Xie J., Liu J., Pan S., Review of phase change materials integrated in building walls for energy saving. Procedia Engineering, 2015, 121: 763–770. https://doi.org/10.1016/j.proeng.2015.09.027.

    Article  CAS  Google Scholar 

  25. Delgado J.M., Martinho J.C., Sá A.V., Guimarães A.S., Abrantes V., Thermal energy storage with phase change materials: A literature review of applications for buildings materials. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-97499-6.

    Google Scholar 

  26. Trunilina A.V., Baurova N.I., Polymer composites with biodegradative properties. Polymer Science, Series D, 2019, 12: 167–169. https://doi.org/10.1134/S1995421219020230.

    Article  CAS  Google Scholar 

  27. Palacios A., De Gracia A., Haurie L., Cabeza L.F., Fernández A.I., Barreneche C., Study of the thermal properties and the fire performance of flame retardant-organic PCM in bulk form. Materials, 2018, 11(1): 117. https://doi.org/10.3390/ma11010117.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A.M., Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 2019, 129: 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126.

    Article  CAS  Google Scholar 

  29. Mahdi J.M., Lohrasbi S., Nsofor E.C., Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer, 2019, 137: 630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.111.

    Article  CAS  Google Scholar 

  30. BCN, Información Territorial, Bibl. Del Congr. Nac. Chile. (2022). https://www.bcn.cl/siit/nuestropais/region2/region2 (accessed June 1, 2022).

  31. MMA, Base digital del clima, Minist. Del Medio Ambient. Gob. Chile. (2022). http://basedigitaldelclima.mma.gob.cl/study/one/zones/34 (accessed June 1, 2022).

  32. Weather Spark, El clima promedio en Antofagasta, Cedar Lake Ventur. Inc. (2022). https://es.weatherspark.com/y/26546/Clima-promedio-en-Antofagasta-Chile-durante-todo-el-ano (accessed June 1, 2022).

  33. Molina A., Falvey M., Rondanelli R., A solar radiation database for Chile. Scientific Reports, 2017, 7: 1–11. https://doi.org/10.1038/s41598-017-13761-x.

    Article  Google Scholar 

  34. DesignBuilder, DesignBuilder v5.0.2.3, (2018). https://designbuilder.co.uk/.

  35. SCS Arquitecto Spa, Guía Buiclimática. Zonas climáticas del Chile Continental, (2018). https://scsarquitecto.cl/guia-bioclimatica-zonas-climaticas-chile-continental/ (accessed July 6, 2022).

  36. Sharma A., Tyagi V. V., Chen C.R., Buddhi D., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318–345. https://doi.org/10.1016/j.rser.2007.10.005.

    Article  CAS  Google Scholar 

  37. Kuznik F., Virgone J., Experimental assessment of a phase change material for wall building use. Applied Energy, 2009, 86: 2038–2046. https://doi.org/10.1016/j.apenergy.2009.01.004.

    Article  ADS  CAS  Google Scholar 

  38. Boemi S.N., Irulegi O., Santamouris M., Energy performance of buildings: Energy efficiency and built environment in temperate climates. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-20831-2.

    Book  Google Scholar 

  39. US Department of Energy, EnergyPlus energy simulation software (version 8.7.0), 2018. https://energyplus.net/.

  40. Tabares-Velasco P.C., Christensen C., Bianchi M., Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 2012, 54: 186–196. https://doi.org/10.1016/j.buildenv.2012.02.019.

    Article  Google Scholar 

  41. Auzeby M., Wei S., Underwood C., Tindall J., Chen C., Ling H., Buswell R., Effectiveness of using phase change materials on reducing summer overheating issues in UK residential buildings with identification of influential factors. Energies, 2016, 9(8): 605. https://doi.org/10.3390/en9080605.

    Article  Google Scholar 

  42. Ozdenefe M., Dewsbury J., Dynamic thermal simulation of a PCM lined building with energy plus. Proceedings of 7th WSEAS International Conference on Energy and Environment, Kos Island, Greece, 2012, pp. 359–364.

  43. Neila González F.J., Arquitectura bioclimática en un entorno sostenible. Editorial Munilla-Leria, Madrid, 2004.

    Google Scholar 

  44. Ramakrishnan S., Wang X., Sanjayan J., Wilson J., Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied Energy, 2017, 207: 654–664. https://doi.org/10.1016/j.apenergy.2017.05.144.

    Article  ADS  CAS  Google Scholar 

  45. Salihi M., El Fiti M., Harmen Y., Chhiti Y., Chebak A., M’Hamdi Alaoui F.E., Achak M., Bentiss F., Jama C., Evaluation of global energy performance of building walls integrating PCM: Numerical study in semi-arid climate in Morocco. Case Studies in Construction Materials, 2022, 16: e00979. https://doi.org/10.1016/j.cscm.2022.e00979.

    Article  Google Scholar 

  46. Al-Absi Z.A., Mohd Hafizal M.I., Ismail M., Mardiana A., Ghazali A., Peak indoor air temperature reduction for buildings in hot-humid climate using phase change materials. Case Studies in Thermal Engineering, 2020, 22: 100762. https://doi.org/10.1016/j.csite.2020.100762.

    Article  Google Scholar 

  47. Bhamare D.K., Rathod M.K., Banerjee J., Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. Journal of Building Engineering, 2020, 28: 101018. https://doi.org/10.1016/j.jobe.2019.101018.

    Article  Google Scholar 

  48. Mohseni E., Tang W., Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM. Renewable Energy, 2021, 168: 865–877. https://doi.org/10.1016/j.renene.2020.12.112.

    Article  Google Scholar 

  49. Kabdrakhmanova M., Memon S.A., Saurbayeva A., Implementation of the panel data regression analysis in PCM integrated buildings located in a humid subtropical climate. Energy, 2021, 237: 121651. https://doi.org/10.1016/j.energy.2021.121651.

    Article  Google Scholar 

  50. Ascione F., Bianco N., De Masi R.F., de’Rossi F., Vanoli G.P., Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season. Applied Energy, 2014, 113: 990–1007. https://doi.org/10.1016/j.apenergy.2013.08.045.

    Article  ADS  Google Scholar 

  51. Sovetova M., Memon S.A., Kim J., Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Solar Energy, 2019, 189: 357–371. https://doi.org/10.1016/j.solener.2019.07.067.

    Article  ADS  Google Scholar 

  52. Mi X., Liu R., Cui H., Memon S.A., Xing F., Lo Y., Energy and economic analysis of building integrated with PCM in different cities of China. Applied Energy, 2016, 175: 324–336. https://doi.org/10.1016/j.apenergy.2016.05.032.

    Article  ADS  Google Scholar 

  53. Said M.A., Hassan H., Impact of energy storage of new hybrid system of phase change materials combined with air-conditioner on its heating and cooling performance. Journal of Energy Storage, 2021, 36: 102400. https://doi.org/10.1016/j.est.2021.102400.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the research support provided by CEDEUS (ANID/FONDAP 1522A0002), SERC (ANID/FONDAP 1522A0006), and the UAI Earth Research Centre. Also, the authors extend their gratitude to FAVE Project, Code: 2018-2019-3C1-069, funded by FONDOCyT 2018-2019, Ministry of Higher Education Science, and Technology (MESCyT). F.S. acknowledges support from ANTD/FONDECYT 3210690.

Funding

This work was supported by ANID/FONDAP 1522A0002, ANTD/FONDECYT 3210690, MESCyT/FONDOCyT 2018-2019-3C1-069, ANID/FONDAP 1522A0006, and the UAI Earth Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Simon.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, F., Ruiz-Valero, L., Girard, A. et al. Experimental and Numerical Analysis of a PCM-Integrated Roof for Higher Thermal Performance of Buildings. J. Therm. Sci. 33, 522–536 (2024). https://doi.org/10.1007/s11630-023-1909-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1909-5

Keywords

Navigation