Skip to main content

Advertisement

Log in

Barocaloric Material with High Thermal Conductivity for Room-Temperature Refrigeration

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Barocaloric refrigeration technology, one of the caloric-effect refrigeration technologies, is drawing more and more attention. Neopentyl glycol (NPG) was reported to have a giant barocaloric effect, making it a potential barocaloric material. However, the high solid-solid (S-S) phase transition temperature and low thermal conductivity hinder the application of NPG in barocaloric refrigeration. This work lowers the S-S phase transition temperature and improves the thermal conductivity of the NPG-based barocaloric material. An NPG/TMP (TMP: Trimethylolpropane) binary system with an S-S phase transition temperature of 283.15 K is prepared, in which the mass ratio of TMP is 20%. Graphene is then added to the binary system to enhance thermal conductivity, and the optimal mass ratio of graphene was determined to be 5%. The thermal conductivity of this composite is 0.4 W/(m·K), increased by 110% compared to the binary system. To predict the effect of enhanced thermal conductivity on the cold-extraction process of the barocaloric refrigeration cycle, a numerical model is developed. The results show that the cold-extraction time of the barocaloric refrigeration cycle utilizing the composite with 5% graphene as the refrigerant is shortened by 50% compared with that using the binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g :

Gravity acceleration/m·s−2

ΔH :

Latent heat/kJ·kg−1

p :

Pressure/Pa

T :

Temperature/K

T on :

Extrapolated starting temperature/K

T off :

Extrapolated ending temperature/K

λ :

Thermal conductivity/W·(m·K)−1

μ :

Dynamic viscosity/Pa·s

ρ :

Density/kg·m−3

BCE:

Barocaloric effect

DSC:

Differential scanning calorimeter

FT-IR:

Fourier transform infrared spectrometer

GWP:

Global warming potential

HTF:

Heat transfer fluent

NPG:

Neopentyl glycol

PCM:

Phase change material

SEM:

Scanning electronic microscope

S-S:

Solid to solid

TMP:

Trimethylolpropane

References

  1. Kitanovski A., Plaznik U., Tomc U., et al., Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration, 2015, 5: 288–298.

    Article  Google Scholar 

  2. Molenbroek E., Smith M., Surmeli N., et al., Savings and benefits of global regulations for energy efficient products. European Union Report, 2015.

  3. Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., et al., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.

    Article  Google Scholar 

  4. Vuppaladadiyam A.K., Antunes E., Vuppaladadiyam S.S.V., et al., Progress in the development and use of refrigerants and unintended environmental consequences. Science of the Total Environment, 2022, 823: 153670.

    Article  ADS  Google Scholar 

  5. Brown J.S., Domanski P.A., Review of alternative cooling technologies. Applied Thermal Engineering, 2014, 64(1–2): 252–262.

    Article  Google Scholar 

  6. Choi S., Han U., Cho H., et al., Review: Recent advances in household refrigerator cycle technologies. Applied Thermal Engineering, 2016, 132: 560–574.

    Article  Google Scholar 

  7. Kitanovski A., Energy applications of magnetocaloric materials. Advanced Energy Materials, 2020, 10(10): 1903741.

    Article  Google Scholar 

  8. Boldrin D., Fantastic barocalorics and where to find them. Applied Physics Letters, 2021, 118: 170502.

    Article  ADS  Google Scholar 

  9. Moya X., Kar-Narayan S., Mathur N.D., Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450.

    Article  ADS  Google Scholar 

  10. Kitanovski A., Plaznik U., Tomc U., et al., Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration, 2015, 57: 288–298.

    Article  Google Scholar 

  11. Alahmer A., Al-Amayreh M., Mostafa A.O., et al., Magnetic refrigeration design technologies: State of the art and general perspectives. Energies, 2021, 14(15): 4662.

    Article  Google Scholar 

  12. Guo M., Sun B., Wu M., et al., Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film. Applied Physics Letters, 2020, 117: 202901.

    Article  ADS  Google Scholar 

  13. Hao X., Zhai J., Kong L.B., et al., A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1–57.

    Article  Google Scholar 

  14. Greibich F., Schwdiauer R., Mao G., et al., Elastocaloric heat pump with specific cooling power of 20.9 W·g−1 exploiting snap-through instability and strain-induced crystallization. Nature Energy, 2021, 6(3): 260–267.

    Article  ADS  Google Scholar 

  15. Qian S., Yuan L., Yan G., et al., State-of-the-art and prospects of elastocaloric cooling technology. Journal of Refrigeration, 2018, 39(1): 1–12.

    Google Scholar 

  16. Kuang Y., Qi J., Xu H., et al., Low-pressure-induced large reversible barocaloric effect near room temperature in (MnNiGe)-(FeCoGe) alloys. Scripta Materialia, 2021, 200: 113908.

    Article  Google Scholar 

  17. Lloveras P., Tamarit J.-L., Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability, 2021, 8(1): 3–15.

    Google Scholar 

  18. Rodriquez E.L., Filisko F.E., Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental. Journal of Applied Physics, 1982, 53(10): 6536–6540.

    Article  ADS  Google Scholar 

  19. Alex Müller K., Fauth F., Fischer S., et al., Cooling by adiabatic pressure application in Pr1−xLaxNiO3. Applied Physics Letters, 1998, 73(8): 1056–1058.

    Article  ADS  Google Scholar 

  20. Manosa L., Gonzalez-Alonso D., Planes A., et al., Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481.

    Article  ADS  Google Scholar 

  21. Gorev M.V., Bogdanov E.V., Flerov I.N., et al., Barocaloric effect in oxyfluorides Rb2KTiOF5 and (NH4)2NbOF5. Ferroelectrics, 2010, 397(1): 76–80.

    Article  ADS  Google Scholar 

  22. Li B., Kawakita Y., Ohira-Kawamura S., et al., Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510.

    Article  ADS  Google Scholar 

  23. Lloveras P., Aznar A., Barrio M., et al., Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nature Communications, 2019, 10: 1803.

    Article  ADS  Google Scholar 

  24. Dai Z., Wang C., Ding Y., et al., Thermodynamic analysis on the performance of barocaloric refrigeration systems using Neopentyl Glycol as the refrigerant. Journal of Thermal Science, 2022, 32: 1063–1073.

    Article  ADS  Google Scholar 

  25. Zhou S., Zhang Z., Fang X., Research progress of solid-solid phase change materials for thermal energy storage. Chemical Industry and Engineering Progress, 2021, 40(3): 1371–1383.

    Google Scholar 

  26. Shen Y., Study on the organic/inorganic composite energy storage material. Nanjing University of Technology, Nanjing, China, 2005.

    Google Scholar 

  27. Yan Q., Wang W., Research on the thermal storage performance of solid-solid phase-change material of wall. Energy Research & Utilization, 2005, 01: 19–20, 23. (in Chinese)

    Google Scholar 

  28. Zhang J., Wu K., Zhang J., et al., DSC study on phase transition kinetics of Trimethylolethane, Neopentyl Glycol and their binary systems. Acta Energiae Solaris Sinica, 2000, 04: 399–402.

    Google Scholar 

  29. Li X., Zhang G., Wu L., et al., DSC study of Trimethylolethane/Neopentyl Glycol binary system. Journal of Textile Research, 2004, 05: 59–61, 152. (in Chinese)

    Google Scholar 

  30. Zhang N., Song Y., Du Y., et al., A novel solid-solid phase change material: Pentaglycerine/expanded graphite composite PCMs. Advanced Engineering Materials, 2018, 20(10): 1800237.

    Article  Google Scholar 

  31. Santos-Moreno S., Doppiu S., Lopez G.A., et al., Study of the phase transitions in the binary system NPG-TRIS for thermal energy storage applications. Materials (Basel), 2020, 13(5): 1162.

    Article  ADS  Google Scholar 

  32. Jin X., Zhang X., Thermal analysis of a double layer phase change material floor. Applied Thermal Engineering, 2011, 31(10): 1576–1581.

    Article  Google Scholar 

  33. Longeon M., Soupart A., Fourmigué J.-F., et al., Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 2013, 112: 175–184.

    Article  ADS  Google Scholar 

  34. Voller V.R., Fast implicit finite-difference method for the analysis of phase-change problems. Numerical Heat Transfer Part B-Fundamentals, 1990, 17(2): 155–169.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work was supported by the Basic Research Program of Frontier Leading Technologies in Jiangsu Province (BK20202008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Zhang.

Ethics declarations

DING Yulong is an editorial board member for Journal of Thermal Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Dai, Z., Gao, Y. et al. Barocaloric Material with High Thermal Conductivity for Room-Temperature Refrigeration. J. Therm. Sci. 32, 2115–2125 (2023). https://doi.org/10.1007/s11630-023-1867-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1867-y

Keywords

Navigation