Skip to main content
Log in

Experimental Study on Soot Suppression of Acetylene Diffusion Flame by Acoustic-Excited Oscillation in Rijke-Type Burner

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This work reports that the flame oscillation induced by acoustic excitation can effectively suppress soot generation in Rijke-type burners. When the acoustic frequency is close to the natural frequency of the burner system, it can produce resonance resulting in intense oscillation of the flame. The relationship between the soot suppression efficiency and the acoustic field of standing wave at different flame positions is discussed. Compared with that under self-excited oscillation, when there is external forced acoustic force introduced to the flame, oscillation combustion occurred in a lager zone in the glass tube. The fundamental cause of different soot suppression efficiency at different positions is that the standing wave acoustic field causes the particles to move at different speeds in different positions of the glass tube. The axial particle velocity difference results in the formation of acoustic vortexes and the change of the flame shape. The high particle velocity causes the air in the glass tube to turn into the turbulent condition and make the flame temperature rise. Simulation results show that the surface growth rate of soot is reduced, while the oxidation rate of soot is enhanced, which result in the soot suppression under acoustic oscillation. This study can provide some reference for the practical application of oscillate combustion in soot suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao D., Gutmark E., Goey P., A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Progress in Energy and Combustion Science, 2018, 66: 42–82.

    Article  Google Scholar 

  2. Dworkin S.B., Connelly B.C., Schaffer A.M., Bennett B.A.V., Long M.B., Smooke M.D., Miller J.H., Computational and experimental study of a forced, time-dependent, methane-air coflow diffusion flame. Proceedings of the Combustion Institute, 2007, 31(1): 971–978.

    Article  Google Scholar 

  3. Li J., Huang J., Chen X., Zhao D., Shi B., Wei Z., Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 2016, 109: 697–708.

    Article  Google Scholar 

  4. Wen J.P., Zhao D., Zhang C.W., An overview of electricity powered vehicles: lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 2020, 162: 1629–1648.

    Article  Google Scholar 

  5. Chu H.Q., Xiang L.K., Nie X.K., Ya Y.C., Gu M.Y., E J.Q., Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel, 2020, 269: 117451.

    Article  Google Scholar 

  6. Connelly B.C., Long M.B., Smooke M.D., Hall R.J., Colket M.B., Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute, 2009, 32(1): 777–784.

    Article  Google Scholar 

  7. Shaddix C.R., Harrington J.E., Smyth K.C., Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combustion and Flame, 1994, 99(3–4): 723–732.

    Article  Google Scholar 

  8. Zhao D., Guan Y.H., Characterizing modal exponential growth behaviors of self-excited transverse and longitudinal thermoacoustic instabilities. Physics of Fluids, 2022, 34(2): 024109.

    Article  ADS  Google Scholar 

  9. Cai T., Zhao D., Mitigating NOx emissions from an ammonia-fueled micro-power system with a perforated plate implemented. Journal of Hazardous Materials, 2021, 401: 123848.

    Article  Google Scholar 

  10. Chen Y., Zhang J., Effects of gas temperature fluctuation on the soot formation reactions. Chinese Journal of Chemical Engineering, 2013, 21(1): 25–30.

    Article  Google Scholar 

  11. Liang J., Zhang Q., Chen Z., Zheng Z., Yang C., Ma Q., The combustion and emission characteristics of diesel-ethanol blends with THF as cosolvents in a diesel engine operating with EGR. Fuel, 2021, 298: 120843.

    Article  Google Scholar 

  12. Zhou M., Yan F., Ma L., Jiang P., Wang Y., Chung S.H., Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel, 2022, 308: 122003.

    Article  Google Scholar 

  13. Chu H., Xiang L., Nie X., Ya Y., Gu M., Jiaqiang E., Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel, 2020, 269: 117451.

    Article  Google Scholar 

  14. Pauletto G., Mendil M., Libretto N., Mocellin P., Miller J.T., Patience G.S., Short contact time CH4 partial oxidation over Ni based catalyst at 1.5 MPa. Chemical Engineering Journal, 2021, 414: 128831.

    Article  Google Scholar 

  15. Xu L., Wang Y., Liu D., Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel, 2022, 313: 122635.

    Article  Google Scholar 

  16. Chu H.Q., Ya Y.C., Nie X.K., Qiao F., E J.Q., Effects of adding cyclohexane, n-hexane, ethanol, and 2,5-dimethylfuran to fuel on soot formation in laminar coflow n-heptane/iso-octane diffusion flame. Combustion and Flame, 2021, 225: 120–135.

    Article  Google Scholar 

  17. Mansouri A., Zimmer L., Dworkin S.B., Eaves N.A., Impact of pressure-based HACA rates on soot formation in varying-pressure coflow laminar diffusion flames. Combustion and Flame, 2020, 218: 109–120.

    Article  Google Scholar 

  18. Commodo M., Karatas A.E., De Falco G., Minutolo P., D’Anna A., Gulder O.L., On the effect of pressure on soot nanostructure: a Raman spectroscopy investigation. Combustion and Flame, 2020, 219: 13–19.

    Article  Google Scholar 

  19. Zhao D., Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combustion and Flame, 2012, 159(6): 2126–2137.

    Article  Google Scholar 

  20. Zhang Z., Guan D., Zheng Y., Li G., Characterizing premixed laminar flame-acoustics nonlinear interaction. Energy Conversion and Management, 2015, 105: 1399–1399.

    Article  Google Scholar 

  21. Zhang Z., Zhao D., Ni S., Sun Y., Wang B., Chen Y., Li S., Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl burner. Applied Energy, 2019, 235: 463–472.

    Article  ADS  Google Scholar 

  22. Ye Y., Luo X., Dong C., Xu Y., Zhang Z., Numerical and experimental investigation of soot suppression by acoustic oscillated combustion. ACS Omega, 2020, 5(37): 23866–23875.

    Article  Google Scholar 

  23. Zhang Z., Zhao W., Sun K., Suo Y., Ye Y., Fan Z., Wu P., Numerical study on soot suppression of acetylene diffusion flame by acoustic oscillated combustion. Journal of Energy Engineering, 2021, 147(3): 04021008.

    Article  Google Scholar 

  24. Guo H., Wu M., Zhu Y., Li Q., Weng K., Suo Y., Zhang Z., Influence of acoustic energy on suppression of soot from acetylene diffusion flame. Combustion and Flame, 2021, 230: 111455.

    Article  Google Scholar 

  25. Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Nathan G.J., Dally B.B., Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames. Combustion and Flame, 2018, 194: 376–386.

    Article  Google Scholar 

  26. Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Dally B.B., Nathan G.J., Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames. Combustion and Flame, 2017, 181: 270–282.

    Article  Google Scholar 

  27. Foo K.K., Sun Z., Medwell P.R., Alwahabi Z.T., Nathan G.J., Dally B.B., Soot evolution and flame response to acoustic forcing of laminar non-premixed jet flames at varying amplitudes. Combustion and Flame, 2018, 198: 249–259.

    Article  Google Scholar 

  28. Fu C., Yang X., Li Z., Zhang H., Yang Y., Gao Y., Experimental investigation on an acoustically forced flame with simultaneous high-speed LII and stereo PIV at 20 kHz. Applied Optics, 2019, 58(10): C104–C111.

    Article  Google Scholar 

  29. Oliveira F.L., Barreta L.G., Lacava P.T., Experimental aspects of soot presence in pulsating diffusion flame. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2009, 31(2): 137–141.

    Article  Google Scholar 

  30. Zhao D., Li XY., Minimizing transient energy growth of nonlinear thermoacoustic oscillations. International Journal of Heat and Mass Transfer, 2015, 81: 188–197.

    Article  Google Scholar 

  31. Li J.W., Huang J.H., Yan M., Zhao D., Zhao J.Y., Wei Z.J., Wang N.F., Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science, 2014, 52: 47–58.

    Article  Google Scholar 

  32. Li X.Y., Zhao D., Shi B.L., Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems. The Journal of the Acoustical Society of America, 2019, 145(2): 692–702.

    Article  ADS  Google Scholar 

  33. Zhao D., A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies. The Journal of the Acoustical Society of America, 2011, 129(3): 1184–1192.

    Article  ADS  Google Scholar 

  34. Thumuluru S.K., Lieuwen T., Characterization of acoustically forced swirl flame dynamics. Proceedings of the Combustion Institute, 2009, 32(2): 2893–2900.

    Article  Google Scholar 

  35. Li S.H., Zhao D., Ji C.Z., Li J.W., Combustion instabilities in a bifurcating tube: open- and closed-loop measurements. AIAA Journal, 2014, 52(11): 2513–2523.

    Article  ADS  Google Scholar 

  36. Li X.Y., Zhao D., Li J.W., Xu Y.S., Experimental evaluation of anti-sound approach in damping self-sustained thermoacoustics oscillations. Journal of Applied Physics, 2013, 114(20): 204903.

    Article  ADS  Google Scholar 

  37. Li X.Y., Wang Y.H., Wang N.F., Zhao D., Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise. Journal of Sound and Vibration, 2020, 480(18): 11542.

    Google Scholar 

  38. Bonciolini G., Faure-Beaulieu A., Bourquard C., Noiray N., Low order modelling of thermoacoustic instabilities and intermittency: Flame response delay and nonlinearity. Combustion and Flame, 2021, 226: 396–411.

    Article  Google Scholar 

  39. Wu G., Lu Z., Pan W., Guan Y., Li S., Ji C.Z., Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater. Applied Energy, 2019, 239: 331–342.

    Article  ADS  Google Scholar 

  40. Juniper M.P., Sujith R.I., Sensitivity and nonlinearity of thermoacoustic oscillations. Annual Review of Fluid Mechanics, 2018, 50: 661–689.

    Article  ADS  MathSciNet  Google Scholar 

  41. Pawar S.A., Seshadri A., Unni V.R., Sujith R.I., Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent re-active flow. Journal of Fluid Mechanics, 2017, 827: 664–673.

    Article  ADS  MathSciNet  Google Scholar 

  42. Jiménez C., Fernández-Galisteo D., Kurdyumov V.N., Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end. Combustion and Flame, 2021, 225: 499–512.

    Article  Google Scholar 

  43. Dang N., Zhang J., Deguchi Y., Numerical study on the route of flame-induced thermoacoustic instability in a rijke burner. Applied Sciences, 2021, 11(4): 1590.

    Article  Google Scholar 

  44. Kojourimanesh M., Kornilov V., Arteaga I.L., Goey P., Thermo-acoustic flame instability criteria based on upstream reflection coefficients. Combustion and Flame, 2021, 225: 435–443.

    Article  Google Scholar 

  45. Yu Z., Ai Y., Wang Y., Luo C., Thermoacoustic instability analysis of a laminar lean premixed flame under autoignitive conditions. Combustion and Flame, 2021, 225: 513–523.

    Article  Google Scholar 

  46. Zhao D., Guan Y., Reinecke A., Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a burner. Communications Physics, 2019, 2(1): 1–10.

    Article  Google Scholar 

  47. Rayleigh L., The theory of sound SE. MACMILLAN London, U.K., 1929.

    Google Scholar 

  48. Farhat S., Kleiner D., Zhang Y., Jet diffusion flame characteristics in a loudspeaker-induced standing wave. Combustion and Flame, 2005, 142: 317–323.

    Article  Google Scholar 

  49. Zhao D., Transmission loss analysis of a parallel-coupled helmholtz resonator network. AIAA Journal, 2012, 50(6): 1339–1346.

    Article  ADS  Google Scholar 

  50. Zhao D., Gutmark E., Reinecke A., Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners. Science Bulletin, 2019, 64(13): 941–952.

    Article  ADS  Google Scholar 

  51. Ma D., Fundamentals of modern acoustic theory. Science Press Distribution Department, Beijing, China, 2004.

    Google Scholar 

  52. Saito M., Sato M., Nishimura A., Soot suppression by acoustic oscillated combustion. Fuel, 1998, 77(9): 973–978.

    Article  Google Scholar 

  53. Li G., Zhou M., Wang Y., Sensitivity of soot formation to strain rate in steady counterflow flames determines its response under unsteady conditions. Combustion and Flame, 2022, 241: 112107.

    Article  Google Scholar 

  54. Zou Z., Sun H., Chen C., Zhao X., Huang Q., Ying Y., Liu D., Quantitative optical diagnostics on macroscopic soot onset for ethylene diffusion flames with ethyl ester addition. Optics Express, 2022, 30(12): 21410–21422.

    Article  ADS  Google Scholar 

  55. Xu L., Yan F., Zhou M., Wang Y., An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy, 2021, 218: 119479.

    Article  Google Scholar 

  56. Xu L., Yan F., Wang Y., Chung S.H., Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame, 2020, 213: 14–25.

    Article  Google Scholar 

  57. Zhou M., Yan F., Zhong X., Xu L., Wang Y., Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel, 2021, 291: 120089.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (51776188, 21805244), the key program of Natural Science Foundation of Zhejiang Province (LZ21E060001), Fundamental Research Funds of Zhejiang University of Science and Technology (No. 2021QN029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Zhang.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Guo, H., Suo, Y. et al. Experimental Study on Soot Suppression of Acetylene Diffusion Flame by Acoustic-Excited Oscillation in Rijke-Type Burner. J. Therm. Sci. 33, 235–248 (2024). https://doi.org/10.1007/s11630-023-1854-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1854-3

Keywords

Navigation