Skip to main content

Advertisement

Log in

Thermodynamic Analysis on the Performance of Barocaloric Refrigeration Systems Using Neopentyl Glycol as the Refrigerant

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Barocaloric refrigeration is regarded as one of the next-generation alternative refrigeration technology due to its environmental friendliness. In recent years, many researchers have been devoted to finding materials with colossal barocaloric effects, while neglecting the research on barocaloric refrigeration devices and thermodynamic cycles. Neopentyl glycol is regarded as one of the potential refrigerants for barocaloric refrigeration due to its giant isothermal entropy changes and relatively low operating pressure. To evaluate the performance of the barocaloric system using Neopentyl glycol, for the first time, this study establishes a thermodynamic cycle based on the metastable temperature-entropy diagram. The performance of the proposed system is investigated from the aspects of irreversibility, operating temperature range, and operating pressure, and optimized with finite-rate heat transfer. The guidance for the optimal design of the system is given by revealing the effect of the irreversibility in two isobaric processes. The results show that a COP of 8.8 can be achieved at a temperature span of 10 K when the system fully uses the phase transition region of Neopentyl glycol, while a COP of 3 can be achieved at a temperature span of 10 K when the system operates at room temperature. Furthermore, this study also shows that the system performance can be further improved through the modification of Neopentyl glycol, and some future development guidance is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area of heat exchange/m2

COP:

coefficient of performance

h :

heat transfer coefficient/W·m−2·K−1

p :

operating pressure/MPa

Q :

amount of heat exchanged/J

R :

refrigeration capacity/W

s :

specific entropy/J· kg−1·K−1

T :

Temperature/K

t :

Time/s

W :

mechanical work/J

0:

atmospheric pressure/MPa

Δ:

difference

η :

adiabatic irreversibility-factor

ad:

adiabatic

c:

compression

e:

expansion

H:

heat sink/heating

L:

heat source/cooling

max:

maximum

p:

isobaric

r:

reversible

1–4:

state of the barocaloric refrigeration cycle

1st:

the 1st phase transition point

2nd:

the 2nd phase transition point

3rd:

the 3rd phase transition point

4th:

the 4th phase transition point

al–hl:

change of state 1

a2–l2:

change of state 2

a3–d3:

change of state 3

a4–d4:

change of state4

*:

dimensionless

References

  1. Edith Molenbroek M.S., Nesen S., Sven S., et al., Savings and benefits of global regulations for energy efficient products. European Commission, 2015.

  2. Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., et al., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.

    Article  Google Scholar 

  3. Arpagaus C., Bless F., Uhlmann M., et al., High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy, 2018, 152: 985–1010.

    Article  Google Scholar 

  4. Wu D., Hu B., Wang R.Z., Vapor compression heat pumps with pure Low-GWP refrigerants. Renewable & Sustainable Energy Reviews, 2021, 138: 110571.

    Article  Google Scholar 

  5. Kitanovski A., Plaznik U., Tomc U., Poredos A., Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration-Revue Internationale Du Froid, 2015, 57: 288–298.

    Article  Google Scholar 

  6. Shi X.L., Zou J., Chen Z.G., Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 2020, 120(15): 7399–7515.

    Article  Google Scholar 

  7. Franco V., Blazquez J.S., Ipus J.J., et al., Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, 93: 112–232.

    Article  Google Scholar 

  8. Shi J., Han D., Li Z., et al., Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225.

    Article  Google Scholar 

  9. Qian S., Geng Y., Wang Y., et al., A review of elastocaloric cooling: Materials, cycles and, system integrations. International Journal of Refrigeration-Revue Internationale Du Froid, 2016, 64: 1–19.

    Article  Google Scholar 

  10. Li B., Kawakita Y., Ohira-Kawamura S., et al., Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510.

    Article  ADS  Google Scholar 

  11. Zhou Y., Yu J., Design optimization of thermoelectric cooling systems for applications in electronic devices. International Journal of Refrigeration, 2012, 35(4): 1139–1144.

    Article  Google Scholar 

  12. Zhao D., Tan G., A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24.

    Article  Google Scholar 

  13. Brück E., Tegus O., Li X.W., et al., Magnetic refrigeration—towards room-temperature applications. Physica B: Condensed Matter, 2003, 327(2–4): 431–437.

    Article  ADS  Google Scholar 

  14. Gottschall T., Skokov K.P., Fries M., et al., Making a cool choice: the materials library of magnetic refrigeration. Advanced Energy Materials, 2019, 9(34): 1901322.

    Article  Google Scholar 

  15. Gschneidner K.A., Pecharsky V.K., Thirty years of near room temperature magnetic cooling: Where we are today and future prospects. International Journal of Refrigeration, 2008, 31(6): 945–961.

    Article  Google Scholar 

  16. Shi J., Li Q., Gao T., et al., Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121: 279–288.

    Article  Google Scholar 

  17. Nair B., Usui T., Crossley S., et al., Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468–472.

    Article  ADS  Google Scholar 

  18. Ožbolt M., Kitanovski A., Tušek J., Poredoš A., Electrocaloric vs. magnetocaloric energy conversion. International Journal of Refrigeration, 2014, 37: 16–27.

    Article  Google Scholar 

  19. Guo M., Sun B., Wu M., et al., Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film. Applied Physics Letters, 2020, 117(20): 202901.

    Article  ADS  Google Scholar 

  20. Chen J., Lei L., Fang G., Elastocaloric cooling of shape memory alloys: A review. Materials Today Communications, 2021, 28: 102706.

    Article  Google Scholar 

  21. Greibich F., Schwödiauer R., Mao G., et al., Elastocaloric heat pump with specific cooling power of 20.9 Wg-1 exploiting snap-through instability and strain-induced crystallization. Nature Energy, 2021, 6(3): 260–267.

    Article  ADS  Google Scholar 

  22. Qian S., Alabdulkarem A., Ling J., et al., Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. International Journal of Refrigeration, 2015, 57: 62–76.

    Article  Google Scholar 

  23. Manosa L., Planes A., Materials with giant mechanocaloric effects: cooling by strength. Advanced Materials, 2017, 29(11): 1–25.

    Article  Google Scholar 

  24. Manosa L., Gonzalez-Alonso D., Planes A., et al., Giant solid-state barocaloric effect in the Ni−Mn−In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481.

    Article  ADS  Google Scholar 

  25. Manosa L., Gonzalez-Alonso D., Planes A., et al., Inverse barocaloric effect in the giant magnetocaloric La−Fe−Si−Co compound. Nature Communications, 2011, 2: 595.

    Article  ADS  Google Scholar 

  26. Yuce S., Barrio M., Emre B., et al., Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Applied Physics Letters, 2012, 101(7): 071906.

    Article  ADS  Google Scholar 

  27. Stern-Taulats E., Planes A., Lloveras P., et al., Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B, 2014, 89(21): 214105.

    Article  ADS  Google Scholar 

  28. Matsunami D., Fujita A., Takenaka K., Kano M., Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nature Materials, 2015, 14(1): 73–78.

    Article  ADS  Google Scholar 

  29. Bermúdez-García M.J., Sánchez-Andújar M., Castro-Garcia S., et al., Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nature Communications, 2017, 8(1): 15715.

    Article  ADS  Google Scholar 

  30. Aznar A., Lloveras P., Romanini M., et al., Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nature Communications, 2017, 8(1): 1851.

    Article  ADS  Google Scholar 

  31. Romanini M., Wang Y., Gurpinar K., et al., Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Advanced Materials, 2021, 33(10): e2008076.

    Article  Google Scholar 

  32. Kosugi Y., Goto M., Tan Z., et al., Colossal barocaloric effect by large latent heat produced by first-order intersite-charge-transfer transition. Advanced Functional Materials, 2021.

  33. Boldrin D., Fantastic barocalorics and where to find them. Applied Physics Letters, 2021, 118(17): 170502.

    Article  ADS  Google Scholar 

  34. Lloveras P., Tamarit J.-L., Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. Mrs Energy & Sustainability, 2021.

  35. Li F. B., Li M., Xu X., et al., Understanding colossal barocaloric effects in plastic crystals. Nature Communications, 2020, 11(1): 4190.

    Article  ADS  Google Scholar 

  36. Lloveras P., Aznar A., Barrio M., et al., Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nature Communications, 2019, 10(1): 1803.

    Article  ADS  Google Scholar 

  37. Aznar A., Lloveras P., Barrio M., et al., Reversible and irreversible colossal barocaloric effects in plastic crystals. Journal of Materials Chemistry A, 2020, 8(2): 639–647.

    Article  Google Scholar 

  38. Aprea C., Greco A., Maiorino A., Masselli C., Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy, 2018, 165: 439–455.

    Article  Google Scholar 

  39. Aprea C., Greco A., Maiorino A., Masselli C., The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler. Energy, 2020, 190: 116404.

    Article  Google Scholar 

  40. Takenaka K., Sugiura T., Kadowaki Y., et al., Giant Magneto-volume and Magneto-caloric effects of frustrated antiferromagnet Mn3GaN under hydrostatic pressure. Journal of the Physical Society of Japan, 2021, 90(4): 044601.

    Article  ADS  Google Scholar 

  41. Liqing Dang X.Z., Yan Li, Zhiming Yang, Guoxing Lin, Performance Analysis of the Thermodynamic Cycle Using the Refrigeration Material MnFeP0.45As0.55 as the Working Substance. Journal of Engineering Thermophysics, 2019, 40(7): 1470–1475.

    Google Scholar 

  42. Yang Z., Xu Z., Wang J., et al., Thermoeconomic performance optimization of an irreversible Brayton refrigeration cycle using Gd, Gd0.95Dy0.05 or Gd0.95Er0.05 as the working substance. Journal of Magnetism and Magnetic Materials, 2020, 499: 166189.

    Article  Google Scholar 

  43. Gutfleisch O., Gottschall T., Fries M., et al., Mastering hysteresis in magnetocaloric materials. Philosphical Transactions of the Royal Scociety A, 2016, 374: 20150308.

    ADS  Google Scholar 

  44. Gottschall T., Stern-Taulats E., Mañosa L., et al., Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys. Applied Physics Letters, 2017, 110(22): 223904.

    Article  ADS  Google Scholar 

  45. Skokov K.P., Müller K.H., Moore J.D., et al., Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4. Journal of Alloys and Compounds, 2013, 552: 310–317.

    Article  Google Scholar 

  46. Stern-Taulats E., Gracia-Condal A., Planes A., et al., Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Applied Physics Letters, 2015, 107(15): 152409.

    Article  ADS  Google Scholar 

  47. Xia Z., Zhang Y., Chen J., Lin G., Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator. Applied Energy, 2008, 85(2–3): 159–170.

    Article  Google Scholar 

  48. Tušek J., Engelbrecht K., Eriksen D., et al., A regenerative elastocaloric heat pump. Nature Energy, 2016, 1(10): 16134.

    Article  ADS  Google Scholar 

  49. Bell I.H., Groll E.A., Braun J.E., Performance of vapor compression systems with compressor oil flooding and regeneration. International Journal of Refrigeration, 2011, 34(1): 225–233.

    Article  Google Scholar 

  50. She X., Yin Y., Zhang X., A proposed subcooling method for vapor compression refrigeration cycle based on expansion power recovery. International Journal of Refrigeration, 2014, 43: 50–61.

    Article  Google Scholar 

  51. Chen L.G., Sun F.R., Wu C., Kiang R.L., Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities. Energy Conversion and Management, 1997, 38(9): 871–877.

    Article  Google Scholar 

  52. Wang H., Wu G.X., Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle. Chinese Physics B, 2013, 22(8): 087501.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research described in this research is supported by the Basic Research Program of Frontier Leading Technologies in Jiangsu Province (BK20202008), Hebei Natural Science Foundation (No. E2022210022), Science and Technology Project of Hebei Education Department (No. BJK2022056) and the Introduction Program of Oversea Talents of Hebei Province (No. C20220505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosong Zhang or Dongliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., She, X., Wang, C. et al. Thermodynamic Analysis on the Performance of Barocaloric Refrigeration Systems Using Neopentyl Glycol as the Refrigerant. J. Therm. Sci. 32, 1063–1073 (2023). https://doi.org/10.1007/s11630-023-1801-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1801-3

Keywords

Navigation