Skip to main content

Advertisement

Log in

Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As a simple and effective method of heat transfer enhancement, fins are widely used in latent heat storage systems. However, the choice of annular fins and longitudinal fins has always been controversial. In this paper, the melting process of phase change material (PCM) in annular fins and longitudinal fins latent heat storage units with the same volume is numerically simulated. To ensure the same thermal penetration, three-dimensional spaces occupied with fins are specially controlled to be the same. Combined with finned structures, the effects of natural convection (NC), placement mode and heat transfer fluid (HTF) inlet direction on the melting process are studied. The results show that the melting time in annular finned structure is always 10% less than that in longitudinal finned structure, which demonstrates the superior of the annular fins in the latent heat storage unit. The melting time is the shortest in vertical unit with annular fins and HTF inlet at the bottom. Additionally, the correlation formulas of the liquid fraction are proposed in the vertical unit with HTF inlet at the bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HTF:

heat transfer fluid

HTW:

heat transfer wall

NC:

natural convection

PCM:

phase change material

A mush :

mushy zone constant/kg·m−3·s−1

a :

fin length/mm

b :

fin height/mm

c :

fin thickness/mm

c p :

specific heat/J·kg−1·K−1

f :

liquid fraction

Fo :

Fourier number

g :

gravitational acceleration/m·s−2

h :

enthalpy/J·kg−1

K :

heat transfer coefficient/W·m−2·K−1

l :

length of the tube/mm

L :

latent heat/J·kg−1

P :

pressure/Pa

Q :

total energy/kJ

q :

heat flux/W·m−2

R :

radius of the outer tube/mm

r :

radius of the inner tube/mm

Ra :

Rayleigh number

S :

heat transfer area of fin/m2

s :

source term

Ste :

Stefan number

T :

temperature/K

t :

time/s

u :

velocity/m·s−1

V :

volume of fin/m3

α :

thermal diffusivity/m2·s−1

β :

volumetric expansion coefficient/K−1

γ :

angle/(°)

ε :

a small constant

λ :

thermal conductivity/W·m−1·K−1

µ :

dynamic viscosity/Pa·s

v :

kinematic viscosity/m2·s−1

ρ :

density/kg·m−3

Φ :

average storage rate

a:

annular fins

C:

conduction

full:

full melting

in:

inlet

l:

longitudinal fins

lat:

latent

liq:

liquid phase

ref:

reference

sen:

sensible

sol:

solid phase

tot:

total

References

  1. Bouhal T., El Rhafiki T., Kousksou T., Jamil A., Zeraouli Y., PCM addition inside solar water heaters: Numerical comparative approach. Journal of Energy Storage, 2018, 19: 232–246.

    Article  Google Scholar 

  2. Mehryan S.A.M., Ghalambaz M., Sasani Gargari L., Hajjar A., Sheremet M., Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. Journal of Energy Storage, 2020, 28: 101236.

    Article  Google Scholar 

  3. Sarı A., Alkan C., Bilgin C., Micro/nano encapsulation of some paraffin eutectic mixtures with poly (methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Applied Energy, 2014, 136: 217–227.

    Article  Google Scholar 

  4. Heyhat M.M., Mousavi S., Siavashi M., Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage, 2020, 28: 101235.

    Article  Google Scholar 

  5. Li F., Jafaryar M., Hajizadeh M.R., Bach Q.V., Performance of ventilation system involving thermal storage unit considering porous media. Journal of Energy Storage, 2020, 31: 101709.

    Article  Google Scholar 

  6. Mohammed H.I., Talebizadehsardari P., Mahdi J.M., Arshad A., Sciacovelli A., Giddings D., Improved melting of latent heat storage via porous medium and uniform Joule heat generation. Journal of Energy Storage, 2020, 31: 101747.

    Article  Google Scholar 

  7. Shahsavar A., Al-Rashed A.A.A.A., Entezari S., Sardari P.T., Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium. Energy, 2019, 171: 751–769.

    Article  Google Scholar 

  8. Borhani S.M., Hosseini M.J., Ranjbar A.A., Bahrampoury R., Investigation of phase change in a spiral-fin heat exchanger. Applied Mathematical Modelling, 2019, 67: 297–314.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jmal I., Baccar M., Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection. International Journal of Heat and Mass Transfer, 2018, 127: 714–727.

    Article  Google Scholar 

  10. Kumar R., Verma P., An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. Journal of Energy Storage, 2020, 30: 101396.

    Article  Google Scholar 

  11. Rathod M.K., Banerjee J., Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied Thermal Engineering, 2015, 75: 1084–1092.

    Article  Google Scholar 

  12. Sciacovelli A., Gagliardi F., Verda V., Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 2015, 137: 707–715.

    Article  Google Scholar 

  13. Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. International Journal of Heat and Mass Transfer, 2013, 61: 684–695.

    Article  Google Scholar 

  14. Cao X.L., Yuan Y.P., Xiang B., Sun L.L., Zhang X.X., Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures. Energy and Buildings, 2018, 158: 384–392.

    Article  Google Scholar 

  15. Ye W.B., Enhanced latent heat thermal energy storage in the double tubes using fins. Journal of Thermal Analysis and Calorimetry, 2016, 128: 533–540.

    Article  Google Scholar 

  16. Yuan Y., Cao X., Xiang B., Du Y., Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Solar Energy, 2016, 136: 365–378.

    Article  ADS  Google Scholar 

  17. Lacroix M., Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. International Journal of Heat and Mass Transfer, 1993, 36: 2083–2092.

    Article  Google Scholar 

  18. Ismail K.A.R., Lino F.A.M., Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Experimental Thermal and Fluid Science, 2011, 35: 1010–1018.

    Article  Google Scholar 

  19. Pu L., Zhang S., Xu L., Li Y., Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit. Applied Thermal Engineering, 2020, 166: 114753.

    Article  Google Scholar 

  20. Yang X., Lu Z., Bai Q., Zhang Q., Jin L., Yan J., Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 2017, 202: 558–570.

    Article  Google Scholar 

  21. Agyenim F., Eames P., Smyth M., A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, 2009, 83: 1509–1520.

    Article  ADS  Google Scholar 

  22. Seddegh S., Wang X., Henderson A.D., A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Applied Thermal Engineering, 2016, 93: 348–358.

    Article  Google Scholar 

  23. Han G.S., Ding H.S., Huang Y., Tong L.G., Ding Y.L., A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection. International Communications in Heat and Mass Transfer, 2017, 88: 228–235.

    Article  Google Scholar 

  24. Mehta D.S., Solanki K., Rathod M.K., Banerjee J., Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. Journal of Energy Storage, 2019, 23: 344–362.

    Article  Google Scholar 

  25. Longeon M., Soupart A., Fourmigué J.F., Bruch A., Marty P., Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 2013, 112: 175–184.

    Article  Google Scholar 

  26. Brent A.D., Voller V.R., Reid K.J., Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 1988, 13(3): 297–318.

    Article  Google Scholar 

  27. Voller V.R., Prakash C., A fixed grid numerical modeling methodology for convection-diffusion mushy region phase change problems. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719.

    Article  Google Scholar 

  28. Hosseini M.J., Ranjbar A.A., Sedighi K., Rahimi M., A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 2012, 39: 1416–1424.

    Article  Google Scholar 

  29. Ho C.J., Viskanta R., Heat transfer during melting from an isothermal vertical wall. Journal of Heat Transfer-Transactions of the ASME, 1984, 106(1): 12–19.

    Article  Google Scholar 

  30. Shatikian V., Ziskind G., Letan R., Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. International Journal of Heat and Mass Transfer, 2008, 51: 1488–1493.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Qiu, Y. Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit. J. Therm. Sci. 32, 1227–1238 (2023). https://doi.org/10.1007/s11630-023-1731-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1731-0

Keywords

Navigation