Skip to main content

Advertisement

Log in

Application of PCM-based Thermal Energy Storage System in Buildings: A State of the Art Review on the Mathematical Modeling Approaches and Experimental Investigations

  • Special column: Built Thermal Environment
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This review paper critically analyzes the most recent literature (64% published after 2015) on the experimentation and mathematical modeling of latent heat thermal energy storage (LHTES) systems in buildings. Commercial software and in-built codes used for mathematical modeling of LHTES systems are consolidated and reviewed to provide details on the selection of appropriate tools. Insights on software’s computing speed, model simplicity, accuracy (by considering the convective term in the melting process), and application of artificial neural networks are reviewed in detail. Moreover, the overall research status of the experiments conducted on the phase change material-based LHTES systems with different experiment configurations is reviewed. The analysis shows that ANSYS Fluent is the most widely used software for specific heat transfer phenomenon in storage tanks, while self-developed models with simplified terms are evaluated as more flexible and easier to apply. For hybrid systems, self-developed MATLAB, mature parts in ESP-r, TRNSYS, and EnergyPlus are compatible. Further, most of the experimental investigations are conducted on the laboratory scale, providing data for model validation. To provide a clear guidance for the future market application, the scope for future works is presented. With this review, it would be easier to develop a unified, simplified, visual, and accurate simulation platform for the PCM-based thermal energy storage in buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural networks

BCVTB:

Building controls virtual testbed

CTES:

Cascaded thermal energy storage

CTSPCM:

Cascaded thermal storage phase change material

DHW:

Domestic hot water

ETCC:

Effective thermal conductivity coefficient

GA:

Genetic algorithms

GHPS:

Ground heat pump system

HP:

Heat pump

HTF:

Heat transfer fluid

LHTES:

Latent heat thermal energy storage

MAE:

Mean absolute error

MaxD:

Maximum difference

MSE:

Mean square error

NBR:

Nitrile butadiene rubber

OSB:

Oriented strand boards

PCM:

Phase change material

PCT:

Phase change temperature/°C

PCTSU:

Phase change thermal energy storage unit

PVC:

Polyvinyl chloride

RMSE:

Root mean square error

SDHW:

Solar domestic hot water

SWC:

Solar water collector

TES:

Thermal energy storage

VOF:

Volume of fluid

XPS:

Extruded polystyrene boards

References

  1. Lu S., Li Y., Kong X., Pang B., Chen Y., Zheng S., Sun L., A review of pcm energy storage technology used in buildings for the global warming solution. Energy Solutions to Combat Global Warming, Springer International Publishing, Cham, 2017, 33: 611–644.

    Chapter  Google Scholar 

  2. Cabeza L.F., Castell A., Barreneche C., de Gracia A., Fernández A.I., Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 2011, 15: 1675–1695.

    Article  Google Scholar 

  3. Zhang N., Yuan Y., Cao X., Du Y., Zhang Z., Gui Y., Latent heat thermal energy storage systems with solid-liquid phase change materials: a review. Advanced engineering materials, 2018, 20: 1700753.

    Article  Google Scholar 

  4. Tay N.H.S., Liu M., Belusko M., Bruno F., Review on transportable phase change material in thermal energy storage systems. Renewable and Sustainable Energy Reviews, 2017, 75: 264–277.

    Article  Google Scholar 

  5. Zayed M.E., Zhao J., Elsheikh A.H., Hammad F.A., Ma L., Du Y., Kabeel, A.E., Shalaby, S.M., Applications of cascaded phase change materials in solar water collector storage tanks: A review. Solar Energy Materials and Solar Cells, 2019, 199: 24–49.

    Article  Google Scholar 

  6. Du K., Calautit J., Wang Z., Wu Y., Liu H., A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy, 2018, 220: 242–273.

    Article  Google Scholar 

  7. Li S.F., Liu Z., Wang X.-J., A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy, 2019, 255: 113667.

    Article  Google Scholar 

  8. Pardiñas Á.Á., Alonso M.J., Diz R., Kvalsvik K.H., Fernández-Seara J., State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps, Energy and Buildings, 2017, 140: 28–41.

    Article  Google Scholar 

  9. Thambidurai M., Panchabikesan K., N K.M., Ramalingam V., Review on phase change material based free cooling of buildings—The way toward sustainability. Journal of Energy Storage, 2015, 4: 74–88.

    Article  Google Scholar 

  10. Raj V.A.A., Velraj R., Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews, 2010, 14: 2819–2829.

    Article  Google Scholar 

  11. Dardir M., Panchabikesan K., Haghighat F., El Mankibi M., Yuan Y., Opportunities and challenges of Pcm-to-Air Heat Exchangers (pahxs) for Building Free Cooling Applications—a Comprehensive Review. Journal of Energy Storage, 2019, 22: 157–175.

    Article  Google Scholar 

  12. Nkwetta D.N., Haghighat F., Thermal energy storage with phase change material—A state-of-the art review. Sustainable Cities and Society, 2014, 10: 87–100.

    Article  Google Scholar 

  13. AL-Saadi S.N., Zhai Z. (John), Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 2013, 21: 659–673.

    Article  Google Scholar 

  14. Dutil Y., Rousse D.R., Salah N.B., Lassue S., Zalewski L., A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 2011, 15: 112–130.

    Article  Google Scholar 

  15. Klimeš L., Charvát P., Mastani Joybari M., Zálešák M., Haghighat F., Panchabikesan, K., El Mankibi M., Yuan Y., Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review. Applied Energy, 2020, 263: 114572.

    Article  Google Scholar 

  16. Jouhara H., Żabnieńska-Góra A., Khordehgah N., Ahmad D., Lipinski T., Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids 2020, 5–6: 100039.

    Article  Google Scholar 

  17. Verma P., Varun, Singal S., Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 2008, 12: 999–1031.

    Article  Google Scholar 

  18. Frazzica A., Manzan M., Sapienza A., Freni A., Toniato G., Restuccia G., Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications. Applied Energy, 2016, 183: 1157–1167.

    Article  Google Scholar 

  19. Nkwetta D.N., Vouillamoz P.-E., Haghighat F., El Mankibi M., Moreau A., Desai K., Phase change materials in hot water tank for shifting peak power demand. Solar Energy, 2014, 107: 628–635.

    Article  ADS  Google Scholar 

  20. Padovan R., Manzan M., Genetic optimization of a PCM enhanced storage tank for Solar Domestic Hot Water Systems. Solar Energy, 2014, 103: 563–573.

    Article  ADS  Google Scholar 

  21. Moreno P., Castell A., Solé C., Zsembinszki G., Cabeza L.F., PCM thermal energy storage tanks in heat pump system for space cooling. Energy and Buildings, 2014, 82: 399–405.

    Article  Google Scholar 

  22. Real A., García V., Domenech L., Renau J., Montés N., Sánchez F., Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation. Energy and Buildings, 2014, 83: 108–116.

    Article  Google Scholar 

  23. Waser R., Ghani F., Maranda S., O’Donovan T.S., Schuetz P., Zaglio M., Worlitschek J., Fast and experimentally validated model of a latent thermal energy storage device for system level simulations. Applied Energy, 2018, 231: 116–126. DOI: https://doi.org/10.1016/j.apenergy.2018.09.061

    Article  Google Scholar 

  24. Zhu N., Hu P., Lei Y., Jiang Z., Lei F., Numerical study on ground source heat pump integrated with phase change material cooling storage system in office building. Applied Thermal Engineering, 2015, 87, 615–623.

    Article  Google Scholar 

  25. Zou T., Fu W., Liang X., Wang S., Gao X., Zhang Z., Fang Y., Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage. International Journal of Refrigeration, 2018, 95: 175–181.

    Article  Google Scholar 

  26. Moreno P., Castell A., Solé C., Zsembinszki G., Cabeza L.F., PCM thermal energy storage tanks in heat pump system for space cooling. Energy and Buildings, 2014, 82: 399–405.

    Article  Google Scholar 

  27. Hu W., Song M., Jiang Y., Yao Y., Gao Y., A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting. Applied Energy, 2019, 236: 877–892.

    Article  Google Scholar 

  28. Stritih U., Charvat P., Koželj R., Klimes L., Osterman E., Ostry M., Butala V., PCM thermal energy storage in solar heating of ventilation air—Experimental and numerical investigations. Sustainable Cities and Society, 2018, 37: 104–115.

    Article  Google Scholar 

  29. da Cunha J.P., Eames P., Compact latent heat storage decarbonisation potential for domestic hot water and space heating applications in the UK. Applied Thermal Engineering, 2018, 134: 396–406.

    Article  Google Scholar 

  30. El-Sawi A., Haghighat F., Akbari H., Centralized latent heat thermal energy storage system: Model development and validation. Energy and Buildings, 2013, 65: 260–271.

    Article  Google Scholar 

  31. Maccarini A., Hultmark G., Bergsøe N.C., Afshari A., Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustainable Cities and Society, 2018, 42: 384–395.

    Article  Google Scholar 

  32. Li Y., Huang G., Design optimization of the PCM storage tank for heating an Open-air swimming pool. Procedia Engineering, 2017, 205: 842–848.

    Article  Google Scholar 

  33. Huang H., Xiao Y., Lin J., Zhou T., Liu Y., Zhao Q., Improvement of the efficiency of solar thermal energy storage systems by cascading a PCM unit with a water tank. Journal of Cleaner Production, 2020, 245: 118864.

    Article  Google Scholar 

  34. Zhao J., Yuan Y., Haghighat F., Lu J., Feng G., Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model. Energy, 2019, 172: 141–154.

    Article  Google Scholar 

  35. Joybari M.M., Seddegh S., Wang X., Haghighat F., Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy, 2019, 140: 234–244.

    Article  Google Scholar 

  36. Navarro L., Barreneche C., Castell A., Redpath D.A.G., Griffiths P.W., Cabeza L.F., High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. Journal of Energy Storage, 2017, 13: 262–267.

    Article  Google Scholar 

  37. Najafian A., Haghighat F., Moreau A., Integration of PCM in domestic hot water tanks: Optimization for shifting peak demand. Energy and Buildings, 2015, 106: 59–64.

    Article  Google Scholar 

  38. Pop O.G., Balan M.C., A numerical analysis on the performance of DHW storage tanks with immersed PCM cylinders. Applied Thermal Engineering, 2021, 197: 117386.

    Article  Google Scholar 

  39. Koželj R., Mlakar U., Zavrl E., Stritih U., Stropnik R., An experimental and numerical analysis of an improved thermal storage tank with encapsulated PCM for use in retrofitted buildings for heating. Energy and Buildings, 2021, 248: 111196.

    Article  Google Scholar 

  40. Padovan R., Manzan M., Development of a stratified tank storage component for ESP-r with embedded phase change material modules. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2013, 227: 53–61.

    Google Scholar 

  41. Fantucci S., Lorenzati A., Kazas G., Levchenko D., Serale G., Thermal energy storage with super insulating materials: A parametrical analysis. Energy Procedia, 2015, 78: 441–446.

    Article  Google Scholar 

  42. Joybari M.M., Haghighat F., Seddegh S., Yuan Y., Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction. Solar Energy, 2019, 188: 788–798.

    Article  ADS  Google Scholar 

  43. Dincer I., On thermal energy storage systems and applications in buildings. Energy and Buildings, 2002, 34: 377–388.

    Article  Google Scholar 

  44. Shamsi H., Boroushaki M., Geraei H., Performance evaluation and optimization of encapsulated cascade PCM thermal storage. Journal of Energy Storage, 2017, 11: 64–75.

    Article  Google Scholar 

  45. Agyenim F., Hewitt N., The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation. Energy and Buildings, 2010, 42: 1552–1560.

    Article  Google Scholar 

  46. Palomba V., Brancato V., Frazzica A., Experimental investigation of a latent heat storage for solar cooling applications. Applied Energy, 2017, 199: 347–358.

    Article  Google Scholar 

  47. Zeng C., Cao X., Haghighat F., Yuan Y., Klimes L., Mankibi M.E.I., Dardir M., Buried water-phase change material storage for load shifting: A parametric study. Energy and Buildings, 2020, 227: 110428.

    Article  Google Scholar 

  48. Jones A., Finn D., PCM thermal storage system analysis using EnergyPlus and BCVTB 14, 2014.

  49. McKenna P., Turner W.J.N., Finn D.P., Geocooling with integrated PCM thermal energy storage in a commercial building. Energy, 2018, 144: 865–876.

    Article  Google Scholar 

  50. Lee Y.T., Kim M.H., Lee S.S., Gim J., Chung J.D., Numerical analysis in a full-scale thermal energy storage tank with dual PCM capsules. Energy and Buildings, 2019, 204: 109410.

    Article  Google Scholar 

  51. Dhaidan N.S., Khodadadi J.M., Melting and convection of phase change materials in different shape containers: A review. Renewable and Sustainable Energy Reviews, 2015, 43: 449–477.

    Article  Google Scholar 

  52. Prieto M.M., Suárez I., González B., Analysis of the thermal performance of flat plate PCM heat exchangers for heating systems. Applied Thermal Engineering, 2017, 116: 11–23.

    Article  Google Scholar 

  53. Prieto M.M., González B., Granado E., Thermal performance of a heating system working with a PCM plate heat exchanger and comparison with a water tank. Energy and Buildings, 2016, 122: 89–97.

    Article  Google Scholar 

  54. D’Avignon K., Kummert M., Modeling horizontal storage tanks with encapsulated phase change materials for building performance simulation. Science and Technology for the Built Environment, 2018, 24: 327–342.

    Article  Google Scholar 

  55. Belusko M., Halawa E., Bruno F., Characterising PCM thermal storage systems using the effectiveness-NTU approach. International Journal of Heat and Mass Transfer, 2012, 55: 3359–3365.

    Article  Google Scholar 

  56. El-Sawi A., Haghighat F., Akbari H., Assessing long-term performance of centralized thermal energy storage system. Applied Thermal Engineering, 2014, 62: 313–321.

    Article  Google Scholar 

  57. Farah S., Liu M., Saman W., Numerical investigation of phase change material thermal storage for space cooling. Applied Energy, 2019, 239: 526–535.

    Article  Google Scholar 

  58. Gholamibozanjani G., Farid M., Experimental and mathematical modeling of an air-PCM heat exchanger operating under static and dynamic loads. Energy and Buildings, 2019, 202: 109354.

    Article  Google Scholar 

  59. Sun W., Huang R., Ling Z., Fang X., Zhang Z., Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature. Renewable Energy, 2020, 145: 1608–1619.

    Article  Google Scholar 

  60. Liu M., Bruno F., Saman W., Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications. Solar Energy, 2011, 85: 3017–3027.

    Article  ADS  Google Scholar 

  61. Xu T., Humire E.N., Chiu J.N.-W., Sawalha S., Numerical thermal performance investigation of a latent heat storage prototype toward effective use in residential heating systems. Applied Energy, 2020, 278: 115631.

    Article  Google Scholar 

  62. Meng Z.N., Zhang P., Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM. Applied Energy, 2017, 190: 524–539.

    Article  Google Scholar 

  63. Nabavitabatabayi M., Haghighat F., Moreau A., Sra P., Numerical analysis of a thermally enhanced domestic hot water tank. Applied Energy, 2014, 129: 253–260.

    Article  Google Scholar 

  64. Roccamena L., El Mankibi M., Stathopoulos N., Development and validation of the numerical model of an innovative PCM based thermal storage system. Journal of Energy Storage, 2019, 24: 100740.

    Article  Google Scholar 

  65. Ibáñez M., Cabeza L.F., Solé C., Roca J., Nogués M., Modelization of a water tank including a PCM module. Applied Thermal Engineering, 2006, 26: 1328–1333.

    Article  Google Scholar 

  66. Schranzhofer H., Heinz A.P.P., Streicher W., Validation of a TRNSYS simulation model for PCM energy storages and PCM wall construction elements. Ecostock Conference, Stockton College, Pomona, USA, 2006.

  67. Hosseini M.J., Rahimi M., Bahrampoury R., Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 2014, 50: 128–136.

    Article  Google Scholar 

  68. Puertas A., Romero-Cano M., De Las Nieves F., Rosiek S., Batlles F., Simulations of Melting of Encapsulated CaCl2·6H2O for Thermal Energy Storage Technologies. Energies, 2017, 10(4): 568.

    Article  Google Scholar 

  69. Jian Y., Falcoz Q., Neveu P., Bai F., Wang Y., Wang Z., Design and optimization of solid thermal energy storage modules for solar thermal power plant applications. Applied Energy, 2015, 139: 30–42.

    Article  Google Scholar 

  70. Ahmed N., Elfeky K.E., Lu L., Wang Q.W., Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications. Renewable Energy, 2020, 152: 684–697.

    Article  Google Scholar 

  71. Zhao B., Cheng M., Liu C., Dai Z., Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants. Applied Energy, 2016, 178: 784–799.

    Article  Google Scholar 

  72. Wang Z., Zhang H., Dou B., Zhang G., Wu W., Influence of inlet structure on thermal stratification in a heat storage tank with PCMs: CFD and experimental study. Applied Thermal Engineering, 2019, 162: 114151.

    Article  Google Scholar 

  73. Xiong W., Numerical and experimental study of the melting process of a phase change material in a partically filled spherical shell. Theses and Dissertations, Lehigh University, USA, 2888, 2017.

    Google Scholar 

  74. Panchabikesan K., Vincent A.A.R., Ding Y., Ramalingam V., Enhancement in free cooling potential through PCM based storage system integrated with direct evaporative cooling (DEC) unit. Energy, 2018, 144: 443–455.

    Article  Google Scholar 

  75. Panchabikesan K., Swami M.V., Ramalingam V., Haghighat F., Influence of PCM thermal conductivity and HTF velocity during solidification of PCM through the free cooling concept — A parametric study. Journal of Energy Storage, 2019, 21: 48–57.

    Article  Google Scholar 

  76. Li M.-J., Jin B., Ma Z., Yuan F., Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material. Applied Energy, 2018, 221: 1–15.

    Article  Google Scholar 

  77. Cheng X., Zhai X., Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials. Applied Energy, 2018, 215: 566–576.

    Article  Google Scholar 

  78. Sevilla L.T., Radulovic J., Investigation of low grade thermal energy storage systems with phase changing materials. Energy and Built Environment, 2021, 2: 366–373.

    Article  Google Scholar 

  79. Bony J., Citherlet S., Numerical model and experimental validation of heat storage with phase change materials. Energy and Buildings, 2007, 39: 1065–1072.

    Article  Google Scholar 

  80. Katherine D., Michael K., Comparison of system-level simulation and detailed models for storage tanks with PCMs. 13th Conference of International Building Performance Simulation Association, Chambery, France, August, 2013. https://www.aivc.org/resource/comparison-system-level-simulation-and-detailed-models-storage-tanks-phase-change-materials

  81. Klimeš L., Charvát P., Ostrý M., Thermally activated wall panels with microencapsulated PCM: comparison of 1D and 3D models. Journal of Building Performance Simulation, 2019, 12: 404–419.

    Article  Google Scholar 

  82. Zhang C., Li J., Chen Y., Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Applied Energy, 2020, 259: 114102.

    Article  Google Scholar 

  83. Zhang S., Pu L., Xu L., Liu R., Li Y., Melting performance analysis of phase change materials in different finned thermal energy storage. Applied Thermal Engineering, 2020, 176: 115425.

    Article  Google Scholar 

  84. D’Avignon K., Kummert M., Proposed Trnsys model for storage tank with encapsulated phase change materials, SimBuild 2012: IBPSA USA’s 5th biennial conference, Madison, Wisconsin, United States of America, 2012. https://www.semanticscholar.org/paper/PROPOSED-TRNSYS-MODEL-FOR-STORAGE-TANK-WITH-PHASE-D%E2%80%99Avignon-Kummert/b164b3dc1b2a45a372ab55c0df7b8142a72421aa#paper-header.

  85. D’Avignon K., Modeling and experimental validation of the performance of phase change material storage tanks in buildings (phd). École Polytechnique de Montréal, 2015. https://publications.polymtl.ca/1973

  86. Wang H., Liu Z., Wu H., Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array. Energy, 2017, 138: 739–751.

    Article  Google Scholar 

  87. Halawa E., Saman W., Bruno F., A phase change processor method for solving a one-dimensional phase change problem with convection boundary. Renewable Energy, 2010, 35: 1688–1695.

    Article  Google Scholar 

  88. Haberl J.S., Claridge D.E., Culp C., ASHRAE’s Guideline 14–2002 for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit. Texas A&M University, 2005.

  89. Swaminathan C.R., Voller V.R., A general enthalpy method for modeling solidification processes. MTB, 1992, 23: 651–664.

    Article  ADS  Google Scholar 

  90. Delcroix B., Kummert M., Daoud A., Development and numerical validation of a new model for walls with phase change materials implemented in TRNSYS. Journal of Building Performance Simulation, 2017, 10: 422–437.

    Article  Google Scholar 

  91. Lamberg P., Lehtiniemi R., Henell A.-M., Numerical and experimental investigation of melting and freezing processes in phase change material storage. International Journal of Thermal Sciences, 2004, 43: 277–287.

    Article  Google Scholar 

  92. Lamberg P., Sirén K., Analytical model for melting in a semi-infinite PCM storage with an internal fin. Heat & Mass Transfer, 2003, 39: 167–176.

    Article  ADS  MATH  Google Scholar 

  93. Seddegh S., Joybari M.M., Wang X., Haghighat F., Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system. Sustainable Cities and Society, 2017, 35: 13–24.

    Article  Google Scholar 

  94. Jmal I., Baccar M., Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Applied Thermal Engineering, 2015, 84: 320–330.

    Article  Google Scholar 

  95. Rabinataj Darzi A., Hassanzadeh Afrouzi H., Khaki M., Abbasi M., Unconstrained melting and solidification inside rectangular enclosure. Journal of Fundamental and Applied Sciences, 2015, 7: 436.

    Article  Google Scholar 

  96. Li S., Chen Y., Sun Z., Numerical simulation and optimization of the melting process of phase change material inside horizontal annulus. Energies, 2017, 10: 1249.

    Article  Google Scholar 

  97. Charvát P., Klimes L., Ostry M., Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy and Buildings, 2014, 68: 488–497.

    Article  Google Scholar 

  98. Carmona M., Rincón A., Gulfo L., Energy and exergy model with parametric study of a hot water storage tank with PCM for domestic applications and experimental validation for multiple operational scenarios. Energy Conversion and Management, 2020, 222: 113189.

    Article  Google Scholar 

  99. Yaniktepe B., Genc Y.A., Establishing new model for predicting the global solar radiation on horizontal surface. International Journal of Hydrogen Energy, The 4th International Conference on Nuclear and Renewable Energy Resources (NURER2014), 26–29 October 2014, Antalya, Turkey, 2015, 40: 15278–15283.

    Google Scholar 

  100. Mohanraj M., Jayaraj S., Muraleedharan C., Applications of artificial neural networks for thermal analysis of heat exchangers — A review. International Journal of Thermal Sciences, 2015, 90: 150–172.

    Article  Google Scholar 

  101. Kalogirou S.A., Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews, 2001, 5: 373–401.

    Article  Google Scholar 

  102. Jha S.Kr., Bilalovic J., Jha A., Patel N., Zhang H., Renewable energy: Present research and future scope of Artificial Intelligence. Renewable and Sustainable Energy Reviews, 2017, 77: 297–317. DOI:https://doi.org/10.1016/j.rser.2017.04.018

    Article  Google Scholar 

  103. Al-Waeli A.H.A., Kazem H.A., Yousif J.H., Chaichan M.T., Sopian K., Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy, 2020, 145: 963–980.

    Article  Google Scholar 

  104. Scapino L., Zondag H.A., Diriken J., Rindt C.C.M., Van Bael J., Sciacovelli A., Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks. Applied Energy, 2019, 253: 113525.

    Article  Google Scholar 

  105. Urresti A., Campos-Celador A., Sala J.M., Dynamic neural networks to analyze the behavior of phase change materials embedded in building envelopes. Applied Thermal Engineering, 2019, 158: 113783.

    Article  Google Scholar 

  106. Kanesan J., Arunasalam P., Seetharamu K.N., Azid I.A., Artificial neural network trained, genetic algorithms optimized thermal energy storage heatsinks for electronics cooling, in: advances in electronic packaging, Parts A, B, and C. Presented at the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference, ASMEDC, San Francisco, California, USA, 2005, pp. 1389–1395.

    Google Scholar 

  107. Kanimozhi B., Ramesh Bapu B.R., Pranesh V., Thermal energy storage system operating with phase change materials for solar water heating applications: DOE modelling. Applied Thermal Engineering, 2017, 123: 614–624.

    Article  Google Scholar 

  108. Graz T., Model for the transient simulation of water- or PCM slurry-tanks with integrated PCM modules, 18, 2007.

  109. Vogel J., Keller M., Johnson M., Numerical modeling of large-scale finned tube latent thermal energy storage systems. Journal of Energy Storage, 2020, 29: 101389.

    Article  Google Scholar 

  110. Yang X., Wei P., Wang X., He Y.-L., Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam. Applied Energy, 2020, 268: 115019.

    Article  Google Scholar 

  111. Wu L., Zhang X., Liu X., Numerical analysis and improvement of the thermal performance in a latent heat thermal energy storage device with spiderweb-like fins. Journal of Energy Storage, 2020, 32: 101768.

    Article  Google Scholar 

  112. Jones A.T., Finn D.P., Co-simulation of a HVAC system-integrated phase change material thermal storage unit. Journal of Building Performance Simulation, 2017, 10: 313–325.

    Article  Google Scholar 

  113. You Y., Aiwu F., Suyi H., Wei L., Numerical modeling and experimental validation of heat transfer and flow resistance on the shell side of a shell-and-tube heat exchanger with flower baffles. International Journal of Heat and Mass Transfer, 2012, 55: 7561–7569.

    Article  Google Scholar 

  114. Marín J.M., Zalba B., Cabeza L.F., Mehling H., Improvement of a thermal energy storage using plates with paraffin-graphite composite. International Journal of Heat and Mass Transfer, 2005, 48: 2561–2570.

    Article  Google Scholar 

  115. Prieto C., Cabeza L.F., Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Applied Energy, 2019, 254: 113646.

    Article  Google Scholar 

  116. Li Y., Zhang N., Ding Z., Investigation on the energy performance of using air-source heat pump to charge PCM storage tank. Journal of Energy Storage, 2020, 28: 101270.

    Article  Google Scholar 

  117. Liu M., Saman W., Bruno F., Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications. Applied Thermal Engineering, 2011, 31: 2340–2347.

    Article  Google Scholar 

  118. Mankibi M.E., Stathopoulos N., Rezaï N., Zoubir A., Optimization of an Air-PCM heat exchanger and elaboration of peak power reduction strategies. Energy and Buildings, 2015, 106: 74–86.

    Article  Google Scholar 

  119. Agyenim F., Eames P., Smyth M., A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, 2009, 83: 1509–1520.

    Article  ADS  Google Scholar 

  120. Roccamena L., El Mankibi M., Stathopoulos N., Experimental test bed design and development for PCM-water exchangers characterization. Sustainable Cities and Society, 2018, 37: 241–249.

    Article  Google Scholar 

  121. Bédécarrats J.P., Castaing-Lasvignottes J., Strub F., Dumas J.P., Study of a phase change energy storage using spherical capsules. Part I: Experimental results. Energy Conversion and Management, 2009, 50: 2527–2536.

    Article  Google Scholar 

  122. Nallusamy N., Sampath S., Velraj R., Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy, 2007, 32: 1206–1227.

    Article  Google Scholar 

  123. Gil A., Oró E., Miró L., Peiró G., Ruiz Á., Salmerón J.M., Cabeza L.F., Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. International Journal of Refrigeration, 2014, 39: 95–103.

    Article  Google Scholar 

  124. Huang H., Wang Z., Zhang H., Dou B., Huang X., Liang H., Goula M.A., An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 2019, 177: 8–21.

    Article  ADS  Google Scholar 

  125. ASHRAE Guideline 14–2002, Measurement of Energy and Demand Savings, n.d.

  126. Panchabikesan K., V. A.A.R., Abaranji S., Vellaichamy P., Ramalingam V., Effect of direct evaporative cooling during the charging process of phase change material based storage system for building free cooling application—A real time experimental investigation. Energy and Buildings, 2017, 152: 250–263.

    Article  Google Scholar 

  127. Panchabikesan K., Joybari M.M., Haghighat F., Ramalingam V., Ding Y., Feasibility study on the year-round operation of PCM based free cooling systems in tropical climatic conditions. Energy, 2020, 192: 116695.

    Article  Google Scholar 

Download references

Acknowledgment

The work is supported by the National Natural Science Foundation of China (NO: 51678488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Yuan, Y., Haghighat, F. et al. Application of PCM-based Thermal Energy Storage System in Buildings: A State of the Art Review on the Mathematical Modeling Approaches and Experimental Investigations. J. Therm. Sci. 31, 1821–1852 (2022). https://doi.org/10.1007/s11630-022-1650-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1650-5

Keywords

Navigation