Skip to main content
Log in

Thermal Transport across Polyethylene Chains

  • Nano/Microscale Heat Conduction
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript


In polymers, heat could transfer efficiently along the long polymer chains; however due to the finite length of polymer chains, such heat eventually has to pass across the chain-chain boundary which is less effective in heat transfer. This paper investigated the thermal transport across polyethylene chains with molecular dynamics (MD) simulations. Thermal transport across two polymer chains overlapping with each other is studied with different chain length (75 nm, 150 nm and 251 nm) and chain-chain overlapping length. The results show that with increasing overlapping length, the total thermal conductance across the two chains exhibits maximum value, which is due to the increasing thermal resistance along the chains and the decreasing inter-chain thermal boundary resistance. Mathematically, we show that the total thermal resistance can be decomposed into two terms. The coupling term related to the inter-chain thermal resistance tends to saturate even with long overlapping length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Kanamoto T., Tsuruta A., Tanaka K., Takeda M., Porter R.S., Super-drawing of ultrahigh molecular weight polyethylene. 1. Effect of techniques on drawing of single crystal mats. Macromolecules, 1988, 21(2): 470–477.

    Article  ADS  Google Scholar 

  2. Mergenthaler D.B., Pietralla M., Roy S., Kilian H.G., Thermal conductivity in ultraoriented polyethylene. Macromolecules, 1992, 25(13): 3500–3502.

    Article  ADS  Google Scholar 

  3. Fujishiro H., Ikebe M., Kashima T., Yamanaka A., Thermal conductivity and diffusivity of high-strength polymer fibers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36(9A): 5633–5637.

    Article  Google Scholar 

  4. Choy C.L., Wong Y.W., Yang G.W., Kanamoto T., Elastic modulus and thermal conductivity of ultradrawn polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(23): 3359–3367.

    Article  ADS  Google Scholar 

  5. Shen S., Henry A., Tong J., Zheng R., Chen G., Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010, 5(4): 251–255.

    Article  ADS  Google Scholar 

  6. Cao B.-Y., Li Y.-W., Kong J., Chen H., Xu Y., Yung K.-L., Cai A., High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52(8): 1711–1715.

    Article  Google Scholar 

  7. Wang X., Ho V., Segalman R.A., Cahill D.G., Thermal conductivity of high-modulus polymer fibers. Macromolecules, 2013, 46(12): 4937–4943.

    Article  ADS  Google Scholar 

  8. Xu Y., Kraemer D., Song B., Jiang Z., Zhou J., Loomis J., Wang J., Li M., Ghasemi H., Huang X., Li X., Chen G., Nanostructured polymer films with metal-like thermal conductivity. Nature Communications, 2019, 10(1): 1771.

    Article  ADS  Google Scholar 

  9. Wang X., Kaviany M., Huang B., Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale, 2017, 9(45): 18022–18031.

    Article  Google Scholar 

  10. Sperling L.H., Introduction to physical polymer science. Fourth ed., John Wiley & Sons, 2005.

  11. Zhang T., Luo T., Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. Journal of Applied Physics, 2012, 112(9): 094304.

    Article  ADS  Google Scholar 

  12. Sasikumar K., Keblinski P., Effect of chain conformation in the phonon transport across a Si-polyethylene single-molecule covalent junction. Journal of Applied Physics, 2011, 109(11): 114307.

    Article  ADS  Google Scholar 

  13. Duan X., Li Z., Liu J., Chen G., Li X., Roles of kink on the thermal transport in single polyethylene chains. Journal of Applied Physics, 2019, 125(16): 164303.

    Article  ADS  Google Scholar 

  14. Subramanyan H., Zhang W., He J., Kim K., Li X., Liu J., Role of angular bending freedom in regulating thermal transport in polymers. Journal of Applied Physics, 2019, 125(9): 095104.

    Article  ADS  Google Scholar 

  15. Ma H., Tian Z., Chain rotation significantly reduces thermal conductivity of single-chain polymers. Journal of Materials Research, 2018, 34(1): 126–133.

    Article  ADS  Google Scholar 

  16. Yamamoto O., Thermal conductivity of cross-linked polymers. Polymer Journal, 1971, 2: 509.

    Article  Google Scholar 

  17. Ruan K., Guo Y., Lu C., Shi X., Ma T., Zhang Y., Kong J., Gu J., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research, 2021, article ID: 8438614.

  18. Fu C., Li Q., Lu J., Mateti S., Cai Q., Zeng X., Du G., Sun R., Chen Y., Xu J., Wong C.-P., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 2018, 165: 322–330.

    Article  Google Scholar 

  19. Qiu L., Zhu N., Feng Y., Zhang X., Wang X., Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152: 119565.

    Article  Google Scholar 

  20. Guo H., Liu J., Wang Q., Liu M., Du C., Li B., Feng L., High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance. Composites Science and Technology, 2019, 181: 107713.

    Article  Google Scholar 

  21. Huxtable S.T., Cahill D.G., Shenogin S., Xue L., Ozisik R., Barone P., Usrey M., Strano M.S., Siddons G., Shim M., Keblinski P., Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734.

    Article  ADS  Google Scholar 

  22. Shenogin S., Xue L., Ozisik R., Keblinski P., Cahill D.G., Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics, 2004, 95(12): 8136–8144.

    Article  ADS  Google Scholar 

  23. Zhang J., Jiang C., Jiang D., Peng H.-X., Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. Physical Chemistry Chemical Physics, 2014, 16(9): 4378–4385.

    Article  Google Scholar 

  24. Boyer R.F., Miller R.L., Polymer chain stiffness parameter, σ, and cross-sectional area per chain. Macromolecules, 1977, 10(5): 1167–1169.

    Article  ADS  Google Scholar 

  25. Liu J., Yang R., Length-dependent thermal conductivity of single extended polymer chain. Physical Review B, 2012, 86(10): 104307.

    Article  ADS  Google Scholar 

  26. Alborzi M.S., Rajabpour A., Effect of overlapping junctions on the heat transfer between 2D layered composite material. International Communications in Heat and Mass Transfer, 2019, 109: 104348.

    Article  Google Scholar 

  27. Feng W., Yu X., Wang Y., Ma D., Sun Z., Deng C., Yang N., A cross-interface model for thermal transport across the interface between overlapped nanoribbons. Physical Chemistry Chemical Physics, 2019, 21(45): 25072–25079.

    Article  Google Scholar 

Download references


The authors would like to acknowledge the support from National Natural Science Foundation of China (NSFC) (Grant No. 51776080).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiaobo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Duan, X., Zhou, J. et al. Thermal Transport across Polyethylene Chains. J. Therm. Sci. 31, 1061–1067 (2022).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: