Skip to main content

Advertisement

Log in

Application of Ejector in Solid Oxide Fuel Cell Anode Circulation System

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As a new generation fuel cell, solid oxide fuel cell (SOFC) has become a hot spot in the industry due to its unique advantages. In order to improve energy utilization and prevent carbon deposition in the reformer, the ejector is usually used to recover the cell anode exhaust. In this paper, the applications related to ejector in SOFC are reviewed, including the ejector design and optimization methods, the ejector performance verification experiment and the performance of ejector in SOFC systems. Besides, in order to adapt to the wide power output characteristics of the stack, a study on extending the working range of the ejector is also introduced. On the one hand, the theory of optimal design of ejector used in SOFC system is obtained, including the influence of main structure parameters of ejector on the performance of the whole system and the theoretical model of performance monitoring of ejector used in SOFC. On the other hand, it is proved that the ejector used in SOFC power system can prevent the occurrence of carbon deposition problems, while the recovery of exhaust heat can improve the energy utilization of the system. Finally, suggestions for future related research work are given, aiming to promote the ejector-based SOFC system to provide higher and more stable performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

diameter/m

L :

length/m

m :

mass flow rate/kg·s−1

P :

pressure/Pa

T :

temperature/K

c:

back pressure

cb:

backflow pressure

cr:

critical back pressure

P:

primary flow

S:

secondary flow

1:

nozzle throat

2:

mixing chamber

3:

diffuser

α :

nozzle diverging angle/(°)

α D :

diameter ratio

β :

diffuser diverging angle/(°)

η :

efficiency

ω :

entrainment ratio

AGR:

anode gas recycle

AOG:

anode of gas

FC:

fuel cell

NXP:

nozzle exit position

PR:

pressure lift ratio

STCR:

steam to carbon ratio

References

  1. Haile S.M., Fuel cell materials and components. Acta Materialia, 2003, 51: 5981–6000.

    Article  ADS  Google Scholar 

  2. Appleby A.J., Fuel cell technology: Status and future prospects. Energy, 1996, 21(7–8): 521–653.

    Article  Google Scholar 

  3. Arshad A., Ali H.M., Habib A., et al., Energy and exergy analysis of fuel cells: A review. Thermal Science and Engineering Progress, 2019, 9: 308–321.

    Article  Google Scholar 

  4. Hamelin J., Agbossou K., Laperriere A., et al., Dynamic behavior of a PEM fuel cell stack for stationary applications. International Journal of Hydrogen Energy, 2001, 26(6): 625–629.

    Article  Google Scholar 

  5. Dyer C.K., Fuel cells for portable applications. Journal of Power Sources, 2002, 106(1–2): 31–34.

    Article  ADS  Google Scholar 

  6. Krumpelt M., Krause T.R., Carter J.D., et al., Fuel processing for fuel cell systems in transportation and portable power applications. Catalysis Today, 2002, 77(1): 3–16.

    Article  Google Scholar 

  7. Mat Z.A., Kar B.K., Hasmady S., Proton exchange membrane (PEM) and solid oxide (SOFC) fuel cell based vehicles—A review. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), 2017, Sep 1–3, Singapore. DOI: https://doi.org/10.1109/ICITE.2017.8056893.

  8. Sharaf O.Z., Orhan M.F., An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews, 2014, 32: 810–853.

    Article  Google Scholar 

  9. Zaidi S.M.J., Rauf M.A., Fuel cell fundamentals. Springer US, 2009.

  10. Esfe M.H., Afrand M., A review on fuel cell types and the application of nanofluid in their cooling. Journal of Thermal Analysis and Calorimetry, 2020, 140(4): 1633–1654.

    Article  Google Scholar 

  11. Huang C., Lin J., Pan W., et al., Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. Journal of Power Sources, 2016, 303(30): 267–277.

    Article  ADS  Google Scholar 

  12. Andrea L., Hossein M., Vitaliano C., et al., Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Progress in Energy & Combustion Science, 2017, 61: 150–188.

    Article  Google Scholar 

  13. Celik M., Genc G., Elden G., et al., The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell. EPJ Web of Conferences, 2016, 114: 02010.

    Article  Google Scholar 

  14. Powell M., Meinhardt K., Sprenkle V., et al., Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications. Energy, 2017, 125: 614–628.

    Article  Google Scholar 

  15. Fergus J., Solid oxide fuel cells: Materials properties and performance. Green Chemistry & Chemical Engineering, 2008, 30(11): 1485–1496.

    Google Scholar 

  16. Kendall K., Kendall M., High-temperature solid oxide fuel cells for the 21st century: fundamentals. Design and Applications: Second Edition, 2015.

  17. Stambouli A.B., Traversa E., Solid Oxide Fuel Cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002, 6(5): 433–155.

    Article  Google Scholar 

  18. Brett D.J.L., Atkinson A., Brandon N.P., et al., Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568–1578.

    Article  Google Scholar 

  19. Ormerod R.M., Solid oxide fuel cells. Chemical Society Reviews, 2002, 32: 17–28.

    Article  Google Scholar 

  20. Brandon N.P. Skinner S., Steele B.C.H., Recent advances in materials for fuel cells. Annual Review of Materials Research, 2003, 33(1): 183–213.

    Article  ADS  Google Scholar 

  21. Minh N.Q., Solid oxide fuel cell technology—features and applications. Solid State Ionics, 2004, 174(1–4): 271–277.

    Article  Google Scholar 

  22. Singh P., Minh N.Q., Solid oxide fuel cells: technology status. International Journal of Applied Ceramic Technology, 2004, 1(1): 5–15.

    Article  Google Scholar 

  23. Radenahmad N., Azad A.T., Saghir M., et al., A review on biomass derived syngas for SOFC based combined heat and power application. Renewable and Sustainable Energy Reviews, 2020, 119: 109560.

    Article  Google Scholar 

  24. Ramadhani F., Hussain M.A., Mokhlis H., et al., Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable and Sustainable Energy Reviews, 2017, 76: 460–484.

    Article  Google Scholar 

  25. Singhal S.C., Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313.

    Article  Google Scholar 

  26. Sharaf O.Z., Orhan M.F., An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews, 2014, 32: 810–853.

    Article  Google Scholar 

  27. Adams T.A., Nease J., Tucker D., et al., Energy conversion with solid oxide fuel cell systems: a review of concepts and outlooks for the short-and long-term. Industrial & Engineering Chemistry Research, 2013, 52(9): 3089–3111.

    Article  Google Scholar 

  28. Choudhury A., Chandra H., Arora A., Application of solid oxide fuel cell technology for power generation—A review. Renewable & Sustainable Energy Reviews, 2013, 20: 430–442.

    Article  Google Scholar 

  29. Dziurdzia B., Magonski Z., Jankowski H., Commercialisation of Solid Oxide Fuel Cells-opportunities and forecasts. IOP Conference Series: Materials Science and Engineering, 2016, 104(1): 012020.

    Article  Google Scholar 

  30. Fernandes M.D., De P.A.S.T., Bistritzki V.N., et al., SOFC-APU systems for aircraft: A review. International Journal of Hydrogen Energy, 2018, 43: 16311–16333.

    Article  Google Scholar 

  31. Arsalis A., A comprehensive review of fuel cell-based micro-combined-heat-and-power systems. Renewable and Sustainable Energy Reviews, 2019, 105: 391–414.

    Article  Google Scholar 

  32. Kho E.T., Scott J., Amal R., Ni/TiO2 for low temperature steam reforming of methane. Chemical Engineering Science, 2016, 140: 161–170.

    Article  Google Scholar 

  33. Li K., Jia L., Wang X., et al., Methane on-cell reforming in nickel-iron alloy supported solid oxide fuel cells. Journal of Power Sources, 2015, 284: 446–451.

    Article  ADS  Google Scholar 

  34. Ibrahim A.A., Fakeeha A.H., Al-Fatesh A.S., et al., Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy, 2015, 40(24): 7593–7600.

    Article  Google Scholar 

  35. Zhang Y., Wang W., Wang Z., et al., Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio. Catalysis Today, 2015, 256: 130–136.

    Article  Google Scholar 

  36. Angeli S.D., Turchetti L., Monteleone G., et al., Catalyst development for steam reforming of methane and model biogas at low temperature. Applied Catalysis B: Environmental, 2016, 181: 34–46.

    Article  Google Scholar 

  37. Lanzini A., Ferrero D., Papurello D., et al., Reporting degradation from different fuel contaminants in Ni-anode SOFCs. Fuel Cells, 2017, 17(4): 423–433.

    Article  Google Scholar 

  38. Kuramoto K., Hosokai S., Matsuoka K., et al., Degradation behaviors of SOFC due to chemical interaction between Ni-YSZ anode and trace gaseous impurities in coal syngas. Fuel Processing Technology, 2017, 160: 8–18.

    Article  Google Scholar 

  39. Papurello D., Silvestric S., Modena S., Biogas trace compounds impact on high-temperature fuel cells short stack performance. International Journal of Hydrogen Energy, 2021, 46(12): 8792–8801.

    Article  Google Scholar 

  40. Wasajja H., Lindebooma R.E.F., van Lier J.B., et al., Techno-economic review of biogas cleaning technologies for small scale off-grid solid oxide fuel cell applications. Fuel Processing Technology, 2020, 197: 106215.

    Article  Google Scholar 

  41. Papurello D., Tognanac L., Lanzinia A., et al., Proton transfer reaction mass spectrometry technique for the monitoring of volatile sulfur compounds in a fuel cell quality clean-up system. Fuel Processing Technology, 2015, 130: 136–146.

    Article  Google Scholar 

  42. Papurello D., Tomasib L., Silvestri S., et al., Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Processing Technology, 2016, 152: 93–101.

    Article  Google Scholar 

  43. Cho C.K., Choi B.H., Lee K.T., Electrochemical performance of Ni1xFex-Ce0.8Gd0.2O1.9 cermet anodes for solid oxide fuel cells using hydrocarbon fuel. Ceramics International, 2013, 39(1): 389–394.

    Article  Google Scholar 

  44. Miyake M., Iwami M., Goto K., et al., Intermediate-temperature solid oxide fuel cell employing reformed effective biogas: power generation and inhibition of carbon deposition. Journal of Power Sources, 2017, 340: 319–324.

    Article  ADS  Google Scholar 

  45. Bian L.Z, Chen Z.Y., Wang L.J., et al., Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2CO fuels. International Journal of Hydrogen Energy, 2017, 42(20): 14246–14252.

    Article  Google Scholar 

  46. Kubota J., Hashimoto S., Shindo T., et al., Self-modification of Ni metal surfaces with CeO2 to suppress carbon deposition at solid oxide fuel cell anodes. Fuel Cells, 2017, 17(3): 402–406.

    Article  Google Scholar 

  47. Motylinski K., Skrzypkiewicz M., Wierzbicki M., et al., Effects of the gas velocity on formation of the carbon deposits on fuel electrode of AS-SOFC. Journal of Power Technologies, 2018, 98(4): 322–328.

    Google Scholar 

  48. Zhu Y., Jiang P., Geometry optimization study of ejector in anode recirculation solid oxygen fuel cell system. 2011 6th IEEE Conference on Industrial Electronics and Applications. IEEE, 2011, August 04, Beijing, China. DOI: https://doi.org/10.1109/ICIEA.2011.5975549.

  49. Zhu Y., Cai W., Li Y., et al., Anode gas recirculation behavior of a fuel ejector in hybrid solid oxide fuel cell systems: Performance evaluation in three operational modes. Journal of Power Sources, 2008, 185(2): 1122–1130.

    Article  ADS  Google Scholar 

  50. Chen Z., Guo S., Qin C., Experimental research on porous media combustion of SOFC exhaust gas. Case Studies in Thermal Engineering, 2020, 22: 100796.

    Article  Google Scholar 

  51. Tanaka Y., Sato K., Yamamoto A., Kato T., Development of anode off-gas recycle blowers for high efficiency SOFC systems. ECS Transactions, 2013, 57(1): 443–450.

    Article  ADS  Google Scholar 

  52. Hou J.B., Yang M., Zhang J.L., Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells. Renewable Energy, 2020, 155: 1355–1371.

    Article  Google Scholar 

  53. Wagner P.H., Wuillemin Z., Constantin D., et al., Experimental characterization of a solid oxide fuel cell coupled to a steam-driven micro anode off-gas recirculation fan. Applied Energy, 2020, 262: 114219.

    Article  Google Scholar 

  54. Bae H.J., Ban H.S., Noh Y.G., et al., The study of the design and control for the hydrogen recirculation blower noise and vibration reduction. Transactions of the Korean Hydrogen and New Energy Society, 2014, 25(5): 509–515.

    Article  Google Scholar 

  55. Engelbracht M., Peters R., Blum L., et al., Comparison of a fuel-driven and steam-driven ejector in solid oxide fuel cell systems with anode off-gas recirculation: Part-load behavior. Journal of Power Sources, 2015, 277: 251–260.

    Article  ADS  Google Scholar 

  56. Borglum B., Ghezel-Ayagh H., Development of solid oxide fuel cells at versa power systems and fuel cell energy. ECS Transactions, 2013, 57(1): 61–66.

    Article  ADS  Google Scholar 

  57. Rechberger J., Reissig M., Hauth M., AVL SOFC systems on the way of industrialization. Transactions, 2013, 57(1): 141–148.

    ADS  Google Scholar 

  58. Liu Y., Tu Z., Chan S.H., Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Processing Technology, 2021, 214: 106683.

    Article  Google Scholar 

  59. Liu Z.R., Liu Z., Jiao K., et al., Numerical investigation of ejector transient characteristics for a 130-kW PEMFC system. International Journal of Energy Research, 2020, 44(5): 3697–3710.

    Article  Google Scholar 

  60. Baba S., Takahashi S., Kobayashi N., et al., Performance of anodic recirculation by a variable flow ejector for a solid oxide fuel cell system under partial loads. International Journal of Hydrogen Energy, 2020, 45(16): 10039–10049.

    Article  Google Scholar 

  61. Hou J., Yang M., Zhang J., Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells. Renewable Energy, 2020, 155: 1355–1371.

    Article  Google Scholar 

  62. Kuo J.K., Jiang W.Z., Li C.H., et al., Numerical investigation into hydrogen supply stability and I-V performance of PEM fuel cell system with passive venturi ejector. Applied Thermal Engineering, 2020, 169: 114908.

    Article  Google Scholar 

  63. Toghyani S., Afshari E., Baniasadi E., A parametric comparison of three fuel recirculation system in the closed loop fuel supply system of PEM fuel cell. International Journal of Hydrogen Energy, 2019, 44(14): 7518–7530.

    Article  Google Scholar 

  64. Braimakis K., Solar ejector cooling systems: A review. Renewable Energy, 2021, 164: 566–602.

    Article  Google Scholar 

  65. Tashtoush B.M., Al-Nimr M.A., Khasawneh M.A., A comprehensive review of ejector design, performance, and applications. Applied Energy, 2019, 240: 138–172.

    Article  Google Scholar 

  66. Elbel S., Lawrence N., Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016, 62: 1–18.

    Article  Google Scholar 

  67. Pianthong K., Seehanam W., Behnia M., Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion & Management, 2007, 48(9): 2556–2564.

    Article  Google Scholar 

  68. Besagni G., Mereu R., Inzoli F., Ejector refrigeration: a comprehensive review. Renewable & Sustainable Energy Reviews, 2016, 53: 373–407.

    Article  Google Scholar 

  69. Yang Y., Zhu X., Yan Y., Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilization. Applied Energy, 2019, 242: 157–167.

    Article  Google Scholar 

  70. Li Y., Yu J., The effects of ejector geometry parameter and refrigerant charge amount on an ejector-expansion refrigeration system. Applied Thermal Engineering, 2019, 152: 402–408.

    Article  Google Scholar 

  71. Braimakis K., Solar ejector cooling systems: A review. Renewable Energy, 2021, 164: 566–602.

    Article  Google Scholar 

  72. Tang Y., Liu Z., Li Y., et al., Combined auxiliary entrainment and structure optimization for performance improvement of steam ejector with consideration of back pressure variation. Energy Conversion and Management, 2018, 166: 163–173.

    Article  Google Scholar 

  73. Wang K., Wang L., Jia L., et al., Optimization design of steam ejector primary nozzle for MED-TVC desalination system. Desalination, 2019, 471: 114070.

    Article  Google Scholar 

  74. Tang Y., Liu Z., Shi C., et al., A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system. Energy, 2018, 158: 305–316.

    Article  Google Scholar 

  75. Huang B.J., Chang J.M., Wang C.P., et al., A 1-D analysis of ejector performance. International Journal of Refrigeration, 2019, 22(5): 354–364.

    Article  Google Scholar 

  76. Xue H.Y., Wang L., Jia L., et al., Design and investigation of a two-stage vacuum ejector for MED-TVC system. Applied Thermal Engineering, 2019, 167: 114713.

    Article  Google Scholar 

  77. Rogie B., Kaern M R., Wen C., et al., Numerical optimization of a novel gas-gas ejector for fuelling of hydrogen vehicles. International Journal of Hydrogen Energy, 2020, 45(41): 21905–21919.

    Article  Google Scholar 

  78. Hosseinzadeh E., Rokni M., Jabbari M., et al., Numerical analysis of transport phenomena for designing of ejector in PEM forklift system. International Journal of Hydrogen Energy, 2014, 39(12): 6664–6674.

    Article  Google Scholar 

  79. Tanga Y., Liu Z., Lia Y., et al., A double-choking theory as an explanation of the evolution laws of ejector performance with various operational and geometrical parameters. Energy Conversion and Management, 2020, 206: 112499.

    Article  Google Scholar 

  80. Brunner D.A., Marcks S., Bajpai M., et al., Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International Journal of Hydrogen Energy, 2012, 37(5): 4457–4466.

    Article  Google Scholar 

  81. Ray E.R., Veyo S.E., High temperature solid oxide fuel cell: Customer test units. Joint Contractors Meeting on Advanced Turbine Systems, Fuel Cells and Coal-fired Heat, Morgantown, United States, 1993, Aug 3–5.

  82. Riensche E., Meusinger J., Stimming U., et al., Optimization of a 200 kW SOFC cogeneration power plant. part ii: variation of the flowsheet. Journal of Power Sources, 1998, 71: 306–314.

    Article  ADS  Google Scholar 

  83. Vincenzo L., Pagh N.M., Knudsen K.S., Ejector design and performance evaluation for recirculation of anode gas in a micro combined heat and power systems based on solid oxide fuel cell. Applied Thermal Engineering, 2013, 54(1): 26–34.

    Article  Google Scholar 

  84. Takeguchi T., Kani Y., Yano T., et al., Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. Journal of Power Sources, 2002, 112(2): 588–595.

    Article  ADS  Google Scholar 

  85. Dicks A.L., Hydrogen generation from natural gas for the fuel cell systems of tomorrow. Journal of Power Sources, 1996, 61(1–2): 113–124.

    Article  ADS  Google Scholar 

  86. Zhu Y., Cai W., Wen C., Fuel ejector design and simulation model for anodic recirculation SOFC system. Journal of Power Sources, 2007, 173(1): 437–449.

    Article  ADS  Google Scholar 

  87. Genc O., Toros S., Timurkutluk B., Determination of optimum ejector operating pressures for anodic recirculation in SOFC systems. International Journal of Hydrogen Energy, 2017, 42(31): 20241–20251.

    Article  Google Scholar 

  88. Genc O., Toros S., Timurkutluk B., Geometric optimization of an ejector for a 4 kW SOFC system with anode off-gas recycle. International Journal of Hydrogen Energy, 2018, 43(19): 9413–9422.

    Article  Google Scholar 

  89. Marsano F., Magistri L., Massardo A.F., Ejector performance influence on a solid oxide fuel cell anodic recirculation system. Journal of Power Sources, 2004, 129(2): 216–228.

    Article  ADS  Google Scholar 

  90. Zhu Y., Li Y., Cai W., Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems. Energy Conversion and Management, 2011, 52(4): 1881–1889.

    Article  Google Scholar 

  91. Genc O., Toros S., Timurkutluk B., Influence of anode exhaust gas flow direction on the performance of a fuel ejector for solid oxide fuel cells. International Congress on Engineering and Life Science (ICELIS 2018), 2018, Kastamonu, Turkey.

  92. Liu M., Lcmzini A., Halliop W., et al., Anode recirculation behavior of a solid oxide fuel cell system: A safety analysis and a performance optimization. International Journal of Hydrogen Energy, 2013, 38(6): 2868–2883.

    Article  Google Scholar 

  93. Abbas S.Z., Dupont V., Mahmud T., Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor. Fuel, 2017, 202: 271–286.

    Article  Google Scholar 

  94. Sheu, Elysia J., Mokheimer E.M.A., et al., A review of solar methane reforming systems. International Journal of Hydrogen Energy, 2015, 40(38): 12929–12955.

    Article  Google Scholar 

  95. Ghang T.G., Lee S.M., Ahn K.Y., et al., An experimental study on the reaction characteristics of a coupled reactor with a catalytic combustor and a steam reformer for SOFC systems. International Journal of Hydrogen Energy, 2012, 37(4): 3234–3241.

    Article  Google Scholar 

  96. Bernardi D., Travis R., Design and analysis of the basic components in a SOFC anode cycle. Engineering Systems Design and Analysis. 2006, 42487: 99–105.

    Article  Google Scholar 

  97. Zhu Y., Cai W., Wen C., et al., Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 2009, 29(5–6): 898–905.

    Article  Google Scholar 

  98. Genc O., Timurkutluk B., Toros S., Performance evaluation of ejector with different secondary flow directions and geometric properties for solid oxide fuel cell applications. Journal of Power Sources, 2019, 421: 76–90.

    Article  ADS  Google Scholar 

  99. Ferrari M.L., Pascenti M., Massardo A.F., Validated ejector model for hybrid system applications. Energy, 2018, 162: 1106–1114.

    Article  Google Scholar 

  100. Baba S., Takahashi S., Kobayashi N., et al., Performance of anodic recirculation by a variable flow ejector for a solid oxide fuel cell system under partial loads. International Journal of Hydrogen Energy, 2020, 45(16): 10039–10049.

    Article  Google Scholar 

  101. Munts V.A., Volkova Y.V., Ershov M.I., Development and testing of the 3D printed plastic ejector prototype for the SOFC anode gas recirculation. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies. DOI: https://doi.org/10.1109/FarEastCon.2018.8602613.

  102. Jia Y., Na W., Ling W., et al., Optimization on ejector key geometries of a two-stage ejector-based multi-evaporator refrigeration system. Energy Conversion and Management, 2018, 175: 142–150.

    Article  Google Scholar 

  103. Wang X., Wang L., Song Y., et al., Optimal design of two-stage ejector for subzero refrigeration system on fishing vessel. Applied Thermal Engineering, 2021, 187(3): 116565.

    Article  MathSciNet  Google Scholar 

  104. Yadav S., Pandey K.M., Kumar V., et al., Computational analysis of a supersonic two-stage ejector. Materials Today: Proceedings, 2021, 38: 2700–2705.

    Google Scholar 

  105. Chen W., Chen H., Shi C., et al., A novel ejector with a bypass to enhance the performance. Applied Thermal Engineering, 2016, 93: 939–946.

    Article  Google Scholar 

  106. Chen W., Fan J., Huang C., et al., Numerical assessment of ejector performance enhancement by means of two-bypass inlets. Applied Thermal Engineering, 2020, 171: 115086.

    Article  Google Scholar 

  107. Liso V., Olesen A.C., Nielsen M.P., et al., Performance comparison between partial oxidation and methane steam for SOFC micro-CHP systems. Energy, 2011 36(7): 4216–4226.

    Article  Google Scholar 

  108. Dietrich R.U., Lindermeir A., Immisch C., et al., SOFC system using a hot gas ejector for off gas recycling for high efficient power generation from propane. ECS Transactions, 2013, 57(1): 171–184.

    Article  Google Scholar 

  109. Baba S., Kobayashi N., Takahashi S., et al., Development of anode gas recycle system using ejector for 1 kW solid oxide fuel cell. Journal of Engineering for Gas Turbines & Power, 2014, 137(2): 021504.

    Article  Google Scholar 

  110. Baba S., Takahashi S., Kobayashi N., et al., Evaluation of solid oxide fuel cell performance with anode recirculation using variable flow ejector at rated conditions. Mechanical Engineering Journal, 2015, 2(4): 15–00087. DOI: https://doi.org/10.1299/mej.15-00087.

    Article  Google Scholar 

  111. Lee K., Kang S., Ahn K.Y., Development of a highly efficient solid oxide fuel cell system. Applied Energy, 2017, 205: 822–833.

    Article  Google Scholar 

  112. Giapa V.T., Kima Y.S., Leea Y.D., et al., Waste heat utilization in reversible solid oxide fuel cell systems for electrical energy storage: Fuel recirculation design and feasibility analysis. Journal of Energy Storage, 2020, 29: 101434.

    Article  Google Scholar 

  113. Ozgoli H.A., Moghadasi M., Farhani F., et al., Modeling and simulation of an integrated gasification SOFC-CHAT cycle to improve power and efficiency. Environmental Progress & Sustainable Energy, 2017, 36(2): 610–618.

    Article  Google Scholar 

  114. Baba S., Ohguri N., Suzuki Y., et al., Evaluation of a variable flow ejector for anode gas circulation in a 50-kW class SOFC. International Journal of Hydrogen Energy, 2020, 45(19): 11297–11308.

    Article  Google Scholar 

  115. Kim M., Lee W.Y., Kim C.S., Development of the variable multi-ejector for a mini-bus PEMFC system. ECS Transactions, 2007, 5: 773–780.

    Article  Google Scholar 

  116. Xue H., Wang L., Zhang H., et al., Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International Journal of Hydrogen Energy, 2020, 45(28): 14500–14516.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51776110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhao, H., Kong, F. et al. Application of Ejector in Solid Oxide Fuel Cell Anode Circulation System. J. Therm. Sci. 31, 634–649 (2022). https://doi.org/10.1007/s11630-022-1587-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1587-8

Keywords

Navigation