Skip to main content

Advertisement

Log in

Experimental Investigation on Pouch Lithium-ion Battery Thermal Management with Mini-Channels Cooling Plate Based on Heat Generation Characteristic

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

An electrochemical thermal coupling model of lithium battery was established to study the heat generation characteristic in this study. The simulation results showed that the heat generation density of the battery increased with the discharge rate. With the discharge process, the heat generation density of the battery increased continuously. With 2.5C discharge rate, the heat generation density at the end of discharge was 1.82 times of that at the beginning of discharge. The heat generation density at different areas of the battery was not uniform and 46% of the total ohmic heat was generated near the electrode tabs. A cooling plate with variable mini-channels was designed to improve the temperature non-uniformity caused by the heat generation characteristic. A cooling plate with uniform mini-channels was designed for compared experiment. The experiments were conducted with deionized water and refrigerant R141b and carried out with 1.5C, 2C and 2.5C discharge rates. Experimental results showed that the cooling plate with variable mini-channels had a better cooling performance in both single-phase and two-phase cooling conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c 1 :

Li+ concentration in liquid phase/mol·m−3

F:

Faraday constant, 96 485 C·mol−1

i :

current density/A

i app :

applied current density/A·m−2

j loc :

local current density/A·m−2

L neg :

thickness of negative electrode/m

L pos :

thickness of positive electrode/µm

L sep :

thickness of separator/µm

N 1 :

liquid ion flux/A·m−2

Q act :

active heat generation/J

Q ave :

average heat generation density/J

Q cc :

heat generation of current collectors/J

Q ohm :

Ohmic heat generation/J

Q rea :

reaction heat generation/J

Q total :

total heat generation/J

S :

entropy/J·mol−1·K−1

S a :

specific surface area/m−1

T :

temperature/°C

U i :

open circuit potential/V

δ cc :

thickness of current collector/µm

η :

over potential/V

σ 1 :

electric conductivity for liquid phase/S·m−1

σ s :

electric conductivity for solid phase/S·m−1

φ :

potential/V

0:

initial state

act:

active heat

cc:

current collector

i :

neg/negcc/pos/poscc

l:

liquid phase

neg:

negative electrode

ohm:

Ohmic

pos:

positive electrode

rea:

reaction heat

s:

solid phase

sep:

separator

References

  1. Pesaran A., Battery thermal management in EVs and HEVs: issues and solutions. Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, 2001.

  2. Lu L., Han X., Li J., Hua J., Ouyang M., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226: 272–288.

    Article  ADS  Google Scholar 

  3. Rao Z., Wang S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011, 15: 4554–1571.

    Article  Google Scholar 

  4. Zhao R., Zhang S., Liu J., Gu J., A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. Journal of Power Sources, 2015, 299: 557–577.

    Article  ADS  Google Scholar 

  5. An Z., Jia L., Ding Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26(5): 391–412.

    Article  ADS  Google Scholar 

  6. Mahamud R., Park C., Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 2011, 196: 5685–5696.

    Article  ADS  Google Scholar 

  7. Wang T., Tseng K.J., Zhao J., Wei Z., Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy, 2014, 134: 229–238.

    Article  Google Scholar 

  8. Fan Y., Bao Y., Ling C., Chu Y., Tan X., Yang S., Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 2019, 155: 96–109.

    Article  Google Scholar 

  9. Pan S., Ji C., Wang S., Wang B., Study on the performance of parallel air-cooled structure and optimized design for lithium-ion battery module. Fire Technology, 2020, 56: 2623–2647.

    Article  Google Scholar 

  10. Putra N., Ariantara B., Pamungkas R.A., Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 2016, 99: 784–789.

    Article  Google Scholar 

  11. Greco A., Cao D., Jiang X., Yang H., A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes. Journal of Power Sources, 2014, 257: 344–355.

    Article  ADS  Google Scholar 

  12. Ye Y., Saw L.H., Shi Y., Tay A.A.O., Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 2015, 86: 281–291.

    Article  Google Scholar 

  13. Wang Q., Jiang B., Xue Q., Sun H., Li B., Zou H., Yan Y., Experimental investigation on EV battery cooling and heating by heat pipes. Applied Thermal Engineering, 2015, 88: 54–60.

    Article  Google Scholar 

  14. Javani N., Dincer I., Naterer G.F., Yilbas B.S., Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer, 2014, 72: 690–703.

    Article  Google Scholar 

  15. Huang Q., Li X., Zhang G., Deng J., Wang C., Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Applied Thermal Engineering, 2020, 183: 116151.

    Article  Google Scholar 

  16. Zhang J., Li X., Zhang G., Wu H., Rao Z., Guo J., Zhou D., Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. Journal of Power Sources, 2020, 480: 229116.

    Article  Google Scholar 

  17. Greco A., Jiang X., Cao D., An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 2015, 278: 50–68.

    Article  ADS  Google Scholar 

  18. Deng T., Zhang G., Ran Y., Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate. International Journal of Heat and Mass Transfer, 2018, 125: 143–152.

    Article  Google Scholar 

  19. Huo Y., Rao Z., Liu X., Zhao J., Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion and Management, 2015, 89: 387–395.

    Article  Google Scholar 

  20. Zhao J., Rao Z., Li Y., Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 2015, 103: 157–165.

    Article  Google Scholar 

  21. Rao Z., Wang Q., Huang C., Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Applied Energy, 2016, 164: 659–669.

    Article  Google Scholar 

  22. Jin L.W., Lee P.S., Kong X.X., Fan Y., Chou S.K., Ultra-thin mini-channels LCP for EV battery thermal management. Applied Energy, 2014, 113: 1786–1794.

    Article  Google Scholar 

  23. Wei L., Jia L., An Z., Dang C., Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates. Journal of Thermal Science, 2020, 29(4): 1001–1009.

    Article  ADS  Google Scholar 

  24. Fang Y., Shen J., Zhu Y., Ye F., Li K., Su L., Investigation on the transient thermal performance of a mini-channel cold plate for battery thermal management. Journal of Thermal Science, 2021, 30: 914–925.

    Article  ADS  Google Scholar 

  25. Wang Y., Wu J., Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Conversion and Management, 2020, 207: 112569.

    Article  Google Scholar 

  26. Bandhauer T.M., Garimella S., Passive, Internal thermal management system for batteries using microscale liquid-vapor phase change. Applied Thermal Engineering, 2013, 61(2): 756–769.

    Article  Google Scholar 

  27. Sheng L., Su L., Zhang H., Li K., Fang Y., Ye W., Fang Y., Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. International Journal of Heat and Mass Transfer, 2019, 141: 658–668.

    Article  Google Scholar 

  28. Monika K., Chakraborty C., Roy S., Dinda S., Singh S.A., Datta S.P., An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. Journal of Energy Storage, 2021, 35: 102301.

    Article  Google Scholar 

  29. An Z., Jia L., Li X., Ding Y., Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Applied Thermal Engineering, 2017, 117: 534–543.

    Article  Google Scholar 

  30. Ju X., Xu C., Zhou Y., Liao Z., Yang Y., Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal. International Journal of Heat and Mass Transfer, 2018, 126: 1206–1218.

    Article  Google Scholar 

  31. Panchal S., Dincer I., Agelin-Chaab M., Fraser R., Fowler M., Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. International Journal of Thermal Sciences, 2016, 99: 204–212.

    Article  Google Scholar 

  32. An Z., Jia L., Wei L., Dang C., Peng Q., Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model. Applied Thermal Engineering, 2018, 137: 792–807.

    Article  Google Scholar 

  33. Du S., Jia M., Cheng Y., Tang Y., Zhang H., Ai L., Zhang K., Lai Y., Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations. International Journal of Thermal Sciences, 2015, 89: 327–336.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFE0104900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Jia or Chao Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Jia, L., Dang, C. et al. Experimental Investigation on Pouch Lithium-ion Battery Thermal Management with Mini-Channels Cooling Plate Based on Heat Generation Characteristic. J. Therm. Sci. 31, 816–829 (2022). https://doi.org/10.1007/s11630-022-1586-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1586-9

Keywords

Navigation