Skip to main content
Log in

Characteristics Analysis of Condensation outside Horizontal Tube Bundles and Novel Condensation Enhancement Method

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Condensation is a phase-change heat-transfer phenomenon crucial in many industries involving latent heat release and mass transfer. Shell-and-tube condensers are essential contributors to the condensation process, and their tube bundles serve as a substrate. Here, the thermal-hydraulic characteristics of condensation in a longitudinal-flow shell-and-tube condenser were investigated numerically. The shell-side longitudinal-flow condensation on the horizontal tube bundles was studied considering inlet flow rate, overheating temperature, and non-condensable gases. Related pressure drops and heat transfer coefficients were subdivided into several components to provide further insights. Two-phase interface behavior analyses were conducted to demonstrate the outcomes with respect to the non-condensable gas layer, vapor quality, and non-condensable gas type. Based on the thorough quantitative analyses outlined above, the thermal resistance of the condensation on the horizontal tube bundle was investigated. The thermal resistance outside the tube was found to dominate the condensation process. Finally, hexagon clamping baffles (HCBs) were introduced as a novel solution to impair condensate boundary layers and provide perturbations to intensify condensation heat transfer. The results revealed that the HCBs enhanced the total heat transfer coefficients by 8.1%–40.7% while reducing the critical overheating temperature and the threshold ratio between sensible and latent heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

empirical constant

a :

volume fraction

B :

empirical constant

c p :

specific heat capacity at constant pressure/J·(kg·K)−1

F TD :

Judge parameter

f :

frictional resistance coefficient

G :

mass flux/kg·(m2·s)−1

h :

heat transfer coefficient/W·(m2·K)−1

K :

overall heat transfer coefficient/W·(m2·K)−1

k :

turbulent kinetic energy

m :

mass transfer rate/kg·(m3·s)−1

p :

pressure/Pa

Δp :

pressure drop/Pa

q :

heat flux/W·m−2

R :

thermal resistance/m2·K·kW−1

Re :

Reynolds number

r :

latent heat of vapor/kJ·kg−1

St :

Tube pitch/m

T :

temperature/K

T TD :

Judge parameter

V :

flow rate/m·s−1

X :

Martinelli parameter

x :

location/mm

α :

ratio of sensible heat and latent heat

β :

condensation coefficient/s−1

λ :

thermal conductivity/W·(m·K)−1

ρ :

density/kg·m−3

υ :

specific volume/m3·kg−1

χ :

vapor quality

cond:

condensation

conv:

convection

i:

inner side of tubes

in:

inlet

L:

liquid phase

N:

non-condensable gases

o:

outer side of tubes

out:

outlet

T:

temperature

t:

turbulent parameter

V:

vapor phase

w:

cooling water-side

HCB:

Hexagon Clamping Baffle

UDF:

User Defined Function

References

  1. Khan A.H., Islam M.S., A new algorithm for a condenser design for large-scale nuclear power plants in tropical region. Journal of Thermal Science, 2020, 29(5): 1370–1389.

    Article  ADS  Google Scholar 

  2. Nusselt W., Die Oberflächenkondensation des Wasserdampfes, VDI, 1916.

  3. Cavallini A., Del Col D., Doretti L., Longo G.A., Rossetto L., Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. International Journal of Refrigeration, 2000, 23(1): 4–25.

    Article  Google Scholar 

  4. Matkovic M., Cavallini A., Del Col D., Rossetto L., Experimental study on condensation heat transfer inside a single circular minichannel. International Journal of Heat and Mass Transfer, 2009, 52(9–10): 2311–2323.

    Article  Google Scholar 

  5. Del Col D., Bortolin S., Cavallini A., Matkovic M., Effect of cross sectional shape during condensation in a single square minichannel. International Journal of Heat and Mass Transfer, 2011, 54(17–18): 3909–3920.

    Article  Google Scholar 

  6. Othmer D.F., The condensation of steam. Industrial and Engineering Chemistry, 1929, 21(6): 576–583.

    Article  Google Scholar 

  7. Wu H., Li Y., Chen J., Analysis of an evaporator-condenser-separated mechanical vapor compression system. Journal of Thermal Science, 2013, 22(2): 152–158.

    Article  ADS  Google Scholar 

  8. Lu J., Cao H., Li J., Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection. International Journal of Heat and Mass Transfer, 2019, 139: 564–576.

    Article  Google Scholar 

  9. Yang L., Zhang L., Li A., Wu J., Modeling thermal and geometrical effects on non-condensable gas desorption in horizontal-tube bundles of falling film evaporation. Desalination, 2020, 478: 114302.

    Article  Google Scholar 

  10. Tang G., Hu H., Zhuang Z., Tao W., Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas. Applied Thermal Engineering, 2012, 36: 414–425.

    Article  Google Scholar 

  11. Shamsabadi H., Rashidi S., Esfahani J.A., Keshmiri A., Condensation in the presence of non-condensable gases in a convergent 3D channel. International Journal of Heat and Mass Transfer, 2020, 152: 119511.

    Article  Google Scholar 

  12. Bae B.U., Kim S., Park Y.S., Kang K.H., Experimental investigation on condensation heat transfer for bundle tube heat exchanger of the PCCS (Passive Containment Cooling System). Annals of Nuclear Energy, 2020, 139: 107285.

    Article  Google Scholar 

  13. Bonneau C., Josset C., Melot V., Auvity B., Comprehensive review of pure vapour condensation outside of horizontal smooth tubes. Nuclear Engineering and Design, 2019, 349: 92–108.

    Article  Google Scholar 

  14. Gu X., Zheng Z., Xiong X., Wang T., Luo Y., Wang K., Characteristics of fluid flow and heat transfer in the shell side of the trapezoidal-like tilted baffles heat exchanger. Journal of Thermal Science, 2018(6), 27: 602–610.

    Article  ADS  Google Scholar 

  15. Hsiao K.L., Conjugate heat transfer for free convection along a vertical plate fin. Journal of Thermal Science, 2010(4), 19: 337–345.

    Article  ADS  Google Scholar 

  16. Ma T., Zhang P., Shi H., Chen Y., Wang Q., Prediction of flow maldistribution in printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 152: 119560.

    Article  Google Scholar 

  17. Gupta A., Kumar R., Gupta A., Condensation of R-134a inside a helically coiled tube-in-shell heat exchanger. Experimental Thermal and Fluid Science, 2014, 54: 279–289.

    Article  Google Scholar 

  18. Yang G., Ding G., Chen J., Yang W., Hu S., Experimental study on shell side heat transfer characteristics of two-phase propane flow condensation for vertical helically baffled shell-and-tube exchanger. International Journal of Refrigeration, 2019, 107: 135–144.

    Article  Google Scholar 

  19. Sun C., Li Y., Han H., Zhu J., Wang S., Liu L., Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process. Energy, 2019, 189: 116178.

    Article  Google Scholar 

  20. Risberg M., Gebart R., Numerical modeling of counter-current condensation in a Black Liquor Gasification plant. Applied Thermal Engineering, 2013, 58(1–2): 327–335.

    Article  Google Scholar 

  21. Jian G., Wang S., Sun L., Wen J., Numerical investigation on the application of elliptical tubes in a spiral-wound heat exchanger used in LNG plant. International Journal of Heat and Mass Transfer, 2019, 130: 333–341.

    Article  Google Scholar 

  22. Wang Q., Xie G., Zeng M., Luo L., Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach. Journal of Thermal Science, 2006, 15(3): 257–262.

    Article  ADS  Google Scholar 

  23. Yu C., Ren Z., Zeng M., Numerical investigation of shell-side performance for shell and tube heat exchangers with two different clamping type anti-vibration baffles. Applied Thermal Engineering, 2018, 133: 125–136.

    Article  Google Scholar 

  24. Hirt C., Nichols B., Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225.

    Article  ADS  Google Scholar 

  25. Lee W.H., Computational methods for two-phase flow and particle transport, World Scientific, Taipei, 2013.

    Book  Google Scholar 

  26. Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598–1605.

    Article  ADS  Google Scholar 

  27. Menter F.R., Kuntz M., Langtry R., Ten years of industrial experience with the SST turbulence model. Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October, 2003.

  28. ANSYS Inc., ANSYS FLUENT User Guide 18, 2017.

  29. Yin Z., Investigation on heat transfer performance of vapor condensation with noncondensable gas in channels. Xi’an Jiaotong University, Xi’an, China, 2016. (in Chinese)

    Google Scholar 

  30. Taitel Y., Dukler A.E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 1976, 22(1): 47–55.

    Article  Google Scholar 

  31. Yu C., Cheng T., Chen J., Ren Z., Zeng M., Investigation on thermal-hydraulic performance of parallel-flow shell and tube heat exchanger with a new type of anti-vibration baffle and wire coil using RSM method. International Journal of Thermal Sciences, 2019, 138: 351–366.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support for this work provided by Natural Science Foundation of China (No. 51876146), the Excellent Youth Foundation of Hubei Scientific Committee (No. 2019CFA082), and the Opening Funds of the Key Lab on Steam Power System (TPL2018B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanbing Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Tian, K., Ke, H. et al. Characteristics Analysis of Condensation outside Horizontal Tube Bundles and Novel Condensation Enhancement Method. J. Therm. Sci. 31, 934–945 (2022). https://doi.org/10.1007/s11630-022-1534-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1534-8

Keywords

Navigation