Skip to main content

Advertisement

Log in

Numerical Investigation of Effect of Porosity and Fuel Inlet Velocity on Diffusion Filtration Combustion

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work. The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NOx emissions. Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio, while thermo-physical properties were varied per the solid matrix porosity variation. Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix. Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets. Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity, yielding higher NOx, and lower CO emissions. Furthermore, the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities, wherewith 3 m/s gas velocity, combustion occurs outside of the porous zone. The corresponding NOx and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

absorption coefficient

C :

inertial resistance factor/m−1

D i, m :

laminar diffusion coefficient for species i in the mixture

E :

energy/J

F :

force/N

h :

sensible enthalpy/kJ·kg−1

h i :

specific enthalpy of species j/kJ·kg−1

I :

radiation intensity/W

\({\overrightarrow J _j}\) :

diffusion flux

k eff :

effective thermal conductivity/W·m−1·K−1

R :

net rate of production/kmol·s·m−3

r :

radius/m

\(\overrightarrow r \) :

position vector/m

S :

rate of production/kmol·s·m−3

Sc t :

turbulent Schmidt number

\(\overrightarrow s \) :

direction vector/m

T :

temperature/K

v :

velocity/m·s−1

\(\overrightarrow v \) :

velocity vector/m·s−1

Y j :

mass fraction of species j

α :

permeability/m3

ε :

porosity

\(\overrightarrow \zeta \) :

scattering direction vector

μ :

dynamic viscosity/Pa·s

μ t :

turbulent viscosity/Pa·s

ρ :

density/kg·m−3

s:

solid

f:

fluid

r :

radial coordinate

x :

horizontal coordinate

References

  1. Fossil Fuels. https://ourworldindata.org/fossil-fuels, 2017. (accessed Oct. 14, 2019)

  2. Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlömer S., von Stechow C., Zwickel T., Minx J.C., Climate change 2014: Mitigation of climate change, the intergovernmental panel on climate change. IPCC, Cambridge, United Kingdom and New York, 2014.

    Google Scholar 

  3. Metz B., Davidson O.R., Bosch P.R., Dave R., Climate change 2007: mitigation of climate change: contribution of Working Group III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Cambridge, United Kingdom and New York, 2008.

    Google Scholar 

  4. Weinberg F.J., Combustion temperatures: the future? Nature, 1971, 233: 239–241.

    Article  ADS  Google Scholar 

  5. Hardesty D., Weinber F., Burners producing large excess enthalpies. Combustion Science and Technology, 1974, 8(5–6): 201–214.

    Google Scholar 

  6. Takeno T., Sato K., An excess enthalpy flame theory. Combustion Science and Technology, 1979, 20(1–2): 73–84.

    Article  Google Scholar 

  7. Mujeebu M.A., Abdullah M.Z., Mohamad A.A., Bakar M.Z.A., Trends in modeling of porous media combustion. Progress in Energy and Combustion Science, 2010, 36(6): 627–650.

    Article  Google Scholar 

  8. Howell J.R., Hall M.J., Ellzey J.L., Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science, 1996, 22(2): 121–145.

    Article  Google Scholar 

  9. Mohamad A.A., Transport phenomena in porous media III. Pergamon, Oxford, 2005, pp. 287–304.

    Book  Google Scholar 

  10. Kamal M.M., Mohamad A.A., Combustion in porous media. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2006, 220(5): 487–508.

    Google Scholar 

  11. Pantagani V., Mishra S.C., Combustion of gaseous hydrocarbon fuels within porous media — a review. Advances in Energy Research, 2006, 8: 455–461.

    Google Scholar 

  12. Harris A.T., Wood S., Porous burners for lean-burn applications. Progress in Energy and Combustion Science, 2008, 34(5): 667–684.

    Article  Google Scholar 

  13. Mujeebu M.A., Abdullah M.Z., Bakar M.Z.A., Mohamad A.A., Muhad R.M.N., Abdullah M.K., Combustion in porous media and its applications — a comprehensive survey. Journal of Environmental Management, 2009, 90(8): 2287–2312.

    Article  Google Scholar 

  14. Mujeebu M.A., Abdullah M.Z., Bakar M.Z.A., Mohamad A.A., Abdullah M.K., Applications of porous media combustion technology — a review. Applied Energy, 2009, 86(9): 1365–1375.

    Article  Google Scholar 

  15. Mujeebu M.A., Abdullah M.Z., Bakar M.Z.A., Mohamad A.A., Abdullah M.K., A review of investigations on liquid fuel combustion in porous inert media. Progress in Energy and Combustion Science, 2009, 35(2): 216–230.

    Article  Google Scholar 

  16. Rashwan S.S., Nemitallah M.A., Habib M.A., Review on premixed combustion technology: stability, emission control, applications, and numerical case study. Energy and Fuels, 2016, 30(12): 9981–10014.

    Article  Google Scholar 

  17. Winterbone D.E., Turan A., Advanced thermodynamics for engineers, second ed., Butterworth-Heinemann, Oxford, 2015.

    Google Scholar 

  18. Shi J., Liu Y., Mao M., Lv J., Wang Y., He F., Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor. Energy, 2019, 181: 250–263.

    Article  Google Scholar 

  19. Kamiuto K., Ogawa T., Diffusion flames in cylindrical packed beds. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 585–587.

    Article  Google Scholar 

  20. Kamiuto K., Miyamoto S., Diffusion flames in plane-parallel packed beds. International Journal of Heat and Mass Transfer, 2004, 47(21): 4593–4599.

    Article  Google Scholar 

  21. Dobrego K.V., Kozlov I.M., Zhdanok S.A., Gnesdilov N.N., Modeling of diffusion filtration combustion radiative burner. Internatiional Journal of Heat and Mass Transfer, 2001, 44(17): 3265–3272.

    Article  MATH  Google Scholar 

  22. Kamal M.M., Mohamad A.A., Enhanced radiation output from foam burners operating with a nonpremixed flame. Combustion and Flame, 2005, 140(3): 233–248.

    Article  Google Scholar 

  23. Zhang J., Cheng L., Zheng C., Luo Z., Ni M., Development of non-premixed porous inserted regenerative thermal oxidizer. Journal of Zhejiang University Science A, 2013, 14(9): 671–678.

    Article  Google Scholar 

  24. Liu Y., Zhang J., Fan A., Wan J., Yao H., Liu W., Numerical investigation of CH4/O2 mixing in Y-shaped mesoscale combustors with/without porous media. Chemical Engineering and Processing: Process Intensification, 2014, 79: 7–13.

    Article  Google Scholar 

  25. Kostenko S.S., Ivanova A.N, Karnaukh A.A., Polianczyk E.V., Conversion of methane to synthesis gas in a non-premixed reversed-flow porous bed reactor: a kinetic modeling. Chemical Engineering and Processing: Process Intensification, 2017, 122: 473–486.

    Article  Google Scholar 

  26. Kokubun M.A.E, Fachini F.F., Matalon M., Stabilization and extinction of diffusion flames in an inert porous medium. Proceedings of the Combustion Institute, 2017, 36(1): 1485–1493.

    Article  Google Scholar 

  27. Shi J.R., Li B.W., Li-Nan, Xia Y.F., Xu Y.N., Liu H.S., Experimental and numerical investigations on diffusion filtration combustion in a plane-parallel packed bed with different packed bed heights. Applied Thermal Engineering, 2017, 127: 245–255.

    Article  Google Scholar 

  28. Klayborworn S., Pakdee W., Effects of porous insertion in a round-jet burner on flame characteristics of turbulent non-premixed syngas combustion. Case Studies in Thermal Engineering, 2019, 14: 100451.

    Article  Google Scholar 

  29. Banerjee A., Kundu P., Gnatenko V., Zelepouga S., Wagner J., Chudnovsky Y., Saveliev A., NOx minimization in staged combustion using rich premixed flame in porous media. Combustion Science and Technology, 2019, 192(9): 1633–1649.

    Article  Google Scholar 

  30. Norbury J., Byrne H., The effects of radiation on combustion in porous media. Mathematical and Computer Modelling, 1996, 24(8): 89–94.

    Article  MATH  Google Scholar 

  31. Li H., Shi J., Mao M., Liu Y., Experimental and numerical studies on combustion characteristics of N2-diluted CH4 and O2 diffusion combustion in a packed bed. Royal Society open science, 2019, 6(9): 190492.

    Article  ADS  Google Scholar 

  32. Baukal C.E., Industrial burners handbook. CRC Press, NewYork, 2003.

    Book  Google Scholar 

  33. Tarokh A., Mohamad A.A., Jiang L., Non-premixed CH4 combustion in a porous medium. Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 3: Combustion Science and Engineering. Lake Buena Vista, Florida, USA, November 13–19, 2009, pp. 197–204.

  34. Brenner T.W.G., Pickenacker K., Pickenacker O., Trimis D., Wawrzinek K., Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media. Combustion and Flame, 2000, 123(1–2): 201–213.

    Article  Google Scholar 

  35. Mohamad A.A., Porous media utilizations for heat transfer enhancements. Proceedings of the NATO Advanced Study Institute on Porous Media, 2003, pp. 385–395.

  36. Dupont R.W.V., Pourkashanian M., Williams A., The reduction of NOx formation in natural gas burner flames. Fuel, 1992, 72(4): 497–503.

    Article  Google Scholar 

  37. Turns S.R., An introduction to combustion, third ed., McGraw Hill, New Delhi, 1996.

    Google Scholar 

  38. Nitrogen oxides (NOx), why and how they are controlled. https://www3.epa.gov/ttn/catc/cica/other7_e.html, 2016. (accessed Nov 10, 2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Tarokh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarokh, A., Lavrentev, A. & Mansouri, A. Numerical Investigation of Effect of Porosity and Fuel Inlet Velocity on Diffusion Filtration Combustion. J. Therm. Sci. 30, 1278–1288 (2021). https://doi.org/10.1007/s11630-021-1461-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1461-0

Keywords

Navigation