Skip to main content

An Experimental Study on the Phenomena inside the Burning Aviation Kerosene Droplet

Abstract

This paper conducted an experimental study of droplet behavior characteristics occurring within a burning aviation kerosene droplet and on the droplet interface. The droplet combustion was performed in a quiescent high-temperature environment by means of the droplet suspension technique. The soot particles were used as tracers to visualize the fluid motion in the droplet. The shape variation of droplet, internal flow pattern in the burning droplet, and instabilities at gas-liquid phase interface were recorded by a high speed camera. The internal fluid flow in the droplet was revealed to be caused by the Marangoni effect, which was generated because of the surface tension gradient induced by the temperature gradient on the droplet surface. The studies showed that the Marangoni effect has a significant impact on the internal flow. The amplitude of the capillary waves on the surface of the droplet was non-uniform and presented the amplitude characteristics of large-small-some. The wavelength of the capillary waves for burning aviation kerosene droplet ranged from 110 µm to 120 µm.

This is a preview of subscription content, access via your institution.

References

  1. Kuo K.K., Principles of combustion. 2nd ed. John Wiley Sons, United States, 2005.

    Google Scholar 

  2. Javed I., Baek S.W., Waheed K., Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures. Combustion and Flame, 2019, 160(1): 170–183.

    Google Scholar 

  3. Javed I., Baek S.W., Waheed K., Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures: The phenomenon of microexplosion. Experimental Thermal and Fluid Science, 2014, 56(5): 33–14.

    Google Scholar 

  4. Javed I., Baek S.W., Waheed K., Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures. Combustion and Flame, 2015, 162(3): 774–787.

    Google Scholar 

  5. Godsave G.A.E., Studies of the combustion of drops in a fuel spray—The burning of single drops of fuel. Symposium (International) on Combustion, 1953, 4(1): 818–830.

    Google Scholar 

  6. Spalding D.B., The combustion of liquid fuels. Symposium (International) on Combustion, 1953, 4(1): 847–864.

    Google Scholar 

  7. Goldsmith M., Penner S.S., On the burning of single drops of fuel in an oxidizing atmosphere, Jet Propulsion, 1954, 24(4): 245–251.

    Google Scholar 

  8. Wise H., Lorell J., Wood B.J., The effects of chemical and physical parameters on the burning rate of a liquid droplet. Symposium (International) on Combustion, 1955, 5(1): 132–141.

    Google Scholar 

  9. Faeth G.M., Lazar R.S., Bipropellant droplet burning rates and lifetimes in a combustion gas environment. Pennsylvania (PA): Pennsylvania State University, Mechanical Engineering Department, 1969, Report No: NASA CR-72622.

  10. Law C.K., Unsteady droplet vaporization with droplet heating. Combustion and Flame, 1976, 26: 17–22.

    Google Scholar 

  11. Aggarawal S.K., Tong A.Y., Sirignano W.A., A comparison of vaproization models in spray calculations. AIAA Journal, 1984, 22(10): 1448–1457.

    ADS  Google Scholar 

  12. Law C.K., Sirignano W.A., Unsteady droplet combustion with droplet heating—II: Conduction limit. Combustion and Flame, 1977, 28: 175–186.

    Google Scholar 

  13. Sazhin S.S., Shishkova I.N., Kristyadi T., et al., Droplet heating and evaporation: hydrodynamic and kinetic models. Heat Transfer Research, 2008, 39(4): 293–303.

    Google Scholar 

  14. Sazhin S.S., Krutitskii P.A., A conduction model for transient heating of fuel droplets. Progress in Analysis, 2003, 2: 1231–1239.

    MathSciNet  Google Scholar 

  15. Law C.K., Prakash S., Sirignano W.A., Theory of convective, transient, multicomponent droplet vaporization. Symposium (International) on Combustion, 1977, 16(1): 605–617.

    Google Scholar 

  16. Prakash S., Sirignano W.A., Liquid fuel droplet heating with internal circulation. International Journal of Heat and Mass Transfer, 1978, 21(7): 885–895.

    Google Scholar 

  17. Prakash S., Sirignano W.A., Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase. International Journal of Heat and Mass Transfer, 1980, 23(3): 253–268.

    MATH  Google Scholar 

  18. Lara-Urbaneja P., Sirignano W., Theory of transient multicomponent droplet vaporization in a convective field. Symposium (International) on Combustion, 1981, 8(1): 1365–1374.

    Google Scholar 

  19. Tong A.Y., Sirignano W.A., Analysis of vaporizing droplet with slip, internal circulation, and unsteady liquid-phase and quasi-steady gas-phase heat transfer. ASME/JSME Thermal Engineering Joint Conference Proceedings, 1983, 2: 481–487.

    Google Scholar 

  20. Tong A.Y., Sirignano W.A., Multicomponent droplet vaporization in a high temperature gas. Combustion and Flame, 1986, 66(3): 221–235.

    ADS  Google Scholar 

  21. Tong A.Y., Sirignano W.A., Multicomponent transient droplet vaporization: integral equation formulation and approximate solution. Numerical Heat Transfer, 1986, 10: 253–278.

    MATH  Google Scholar 

  22. Ranz W.E., Marshall W.R., Evaporation from drops. Chemical Engineering Progress, 1952, 48(141): 141–146.

    Google Scholar 

  23. Kronig R., Brink J.C., On the theory of extraction from falling droplets. Applied Scientific Research, 1951, 2: 142–154.

    Google Scholar 

  24. Jin J.D., Borman G.L., A model for multicomponent droplet vaporization at high ambient pressures. Combustion Emission and Analysis, 1985, 162: 213–223.

    Google Scholar 

  25. Talley D.G., Yao S.C., A semi-empirical approach to thermal and composition transients inside vaporizing fuel droplets. Symposium (International) on Combustion, 1988, 21(1): 609–616.

    ADS  Google Scholar 

  26. Abramzon B., Sirignano W.A., Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer, 1989, 32(9): 1605–1618.

    Google Scholar 

  27. Elwardany A., Krutitskii P.A., A simplified model for bi-component droplet heating and evaporation. International Journal of Heat and Mass Transfer, 2010, 53(21–22): 4495–4505.

    MATH  Google Scholar 

  28. Bellan J., Summerfield M., Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet. Combustion and Flame, 1978, 33: 107–122.

    Google Scholar 

  29. Bellan J., Harstad K., Analysis of the convective evaporation of nondilute clusters of drops. International Journal of Heat and Mass Transfer, 1987, 30(1): 125–136.

    ADS  Google Scholar 

  30. Bellan J., Harstad K., The details of the convective evaporation of dense and dilute clusters of drops. International Journal of Heat and Mass Transfer, 1987, 30(6): 1083–1093.

    ADS  Google Scholar 

  31. Hegseth J.J., Rashidnia N., Chai A., Natural convection in droplet evaporation. Physical Review E, 1996, 54(2): 1640.

    ADS  Google Scholar 

  32. Bond M., Struchtrup H., Mean evaporation and condensation coefficients based on energy dependent condensation probability. Physical Review E, 2004, 70(6): 061605.

    ADS  Google Scholar 

  33. Ghata N., Shaw B.D., Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. International Journal of Heat and Mass Transfer, 2014, 77(4): 22–36.

    Google Scholar 

  34. Zhao P., Numerical simulation and experimental study on heat and mass transfer mechanism of fuel droplet evaporation. Beijing Jiaotong University, Beijing, China, 2013. (in Chinese)

    Google Scholar 

  35. Muelas A., Remacha P., Ballester J., Droplet combustion and sooting characteristics of UCO biodiesel, heating oil and their mixtures under realistic conditions. Combustion and Flame, 2019, 203: 190–203.

    Google Scholar 

  36. Yang J.R., Yukao C.Y., Whang J.J., et al., Experiments on the ignition of monocomponent and bicomponent fuel droplets in convective flow. Combustion and Flame, 2000, 123(1–2): 266–274.

    Google Scholar 

  37. Bae J.H., Avedisian C.T., Experimental study of the combustion dynamics of jet fuel droplets with additives in the absence of convection. Combustion and Flame, 2004, 137(1–2): 148–162.

    Google Scholar 

  38. Gan Y., Qiao L., Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combustion and Flame, 2011, 158(2): 354–368.

    Google Scholar 

  39. Liu Y.C., Xu Y., Hicks M.C., et al., Comprehensive study of initial diameter effects and other observations on convection-free droplet combustion in the standard atmosphere for n-heptane, n-octane, and n-decane. Combustion and Flame, 2016, 171: 27–41.

    Google Scholar 

  40. Avulapati M.M., Megaritis T., Xia J., et al., Experimental understanding on the dynamics of micro-explosion and puffing in ternary emulsion droplets. Fuel, 2019, 239: 1284–1292.

    Google Scholar 

  41. Miglani A., Basu S., Kumar R., Suppression of instabilities in burning droplets using preferential acoustic perturbations. Combustion and Flame, 2014, 161(12): 3181–3190.

    Google Scholar 

  42. Miglani A., Nandagopalan P., John J., et al., Oscillatory bursting of gel fuel droplets in a reacting environment. Scientific Reports, 2017, 7(1): 3088.

    ADS  Google Scholar 

  43. Turns S.R., An introduction to combustion: concepts and applications. 2nd ed. McGraw Hill, New York, 2000.

    Google Scholar 

  44. Fang C.G., The study on droplet combustion behavior with soot model under electric field. Tsinghua University, Beijing, China, 2013. (in Chinese)

    Google Scholar 

  45. Li H., Research on ignition delay time and surrogate model of coal-based jet fuel. Tsinghua University, Beijing, China, 2017. (in Chinese)

    Google Scholar 

  46. Kang H., Won J., Baek S.W., et al., Autoignition and combustion characteristics of sodium borohydride-based non-toxic hypergolic fuel droplet at elevated temperatures. Combustion and Flame, 2017, 181: 149–156.

    Google Scholar 

  47. Hu H., Larson R.G., Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(9): 3972–3980.

    Google Scholar 

  48. Zhu B.Y., Zhao Z.G., Base of interface chemistry. Chemistry Industry Press, Beijing, China, 1999. (in Chinese)

    Google Scholar 

  49. Savino R., Fico S., Transient Marangoni convection in hanging evaporating drops. Physics of Fluids, 2004, 16: 3738–3754.

    ADS  MATH  Google Scholar 

  50. Elgowainy A., Ashgriz N., Microexplosion of emulsified fuel drops. Energy 2000: The Beginning of a New Millennium, Boca Raton, CRC Press, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Piao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, M., Piao, Y. An Experimental Study on the Phenomena inside the Burning Aviation Kerosene Droplet. J. Therm. Sci. 30, 2202–2213 (2021). https://doi.org/10.1007/s11630-021-1408-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1408-5

Keywords

  • droplet combustion
  • internal flow
  • Marangoni effect
  • capillary waves