Skip to main content

Advertisement

Log in

Effects of Optimized Operating Parameters on Combustion Characteristics and NOx Emissions of a Burner based on Orthogonal Analysis

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

To optimize the structure of the burner, improve the combustion performance, and reduce the emission of NOx, a self-circulating low NOx combustion technology was used to design a new type of flue gas self-circulating low NOx burner. Based on previous research on the numerical model of combustion and the composition of mixed gas on combustion and NOx emissions, the effect of various factors on the ejection coefficient of the flue gas self-circulating structure was analyzed using the orthogonal test method, and the burner operating parameters, such as preheating temperature and excess air coefficient, were deeply studied through the three-dimensional finite element numerical model in this paper. The results show that the diameter ratio of the nozzle and the length of the cylindrical section of the flue gas self-circulating structure have great influence on its ejection and mixing ability. The optimal ejection coefficient was 0.4829. Overall, the amount of NOx emissions greatly increased from 6.23×10−6 (volume fraction) at the preheating temperature 973 K to 3.5×10−3 at preheating temperature 1573 K. When the excess air coefficient decreased from 1.2 to 1, the maximum combustion temperature decreased from 2036.3 K to 1954.22 K, and the NOx emissions decreased from 352.29×10−6 to 159.73×10−6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu X., Liang Z., Zhang Y., Zhao L., Zheng C., Xiang G., Cen K., Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China. Applied Energy, 2016, 184: 171–183.

    Article  Google Scholar 

  2. Liu Z., Li Y., Xu W., Yin H., Gao J., Jin G., Lun L., Jin G., Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case. Energy, 2019, 173: 28–37.

    Article  Google Scholar 

  3. Peng H., Zhang D., Ling X., Li Y., Wang Y., Yu Q.H., She X.H., Li Y.L., Ding Y.L., N-alkanes phase change materials and their microencapsulation for thermal energy storage: a critical review. Energy & Fuels, 2018, 32: 7262‒7292.

    Article  Google Scholar 

  4. Liu S., Xin T., Cai W., Chen W., Wang Y., How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective. Applied Energy, 2018, 211: 64–75.

    Article  Google Scholar 

  5. Sun W., Zhou Y., Lv J., Wu J., Assessment of multi-air emissions: Case of particulate matter (dust), SO2, NOx and CO2 from iron and steel industry of China. Journal of Cleaner Production, 2019, 232: 350–358.

    Article  Google Scholar 

  6. An R., Yu B., Ru L., Wei Y.M., Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Applied Energy, 2018, 226: 862–880.

    Article  Google Scholar 

  7. Sun L., Hang J., Ye L., Research on Scheduling of Iron and Steel Scrap Steelmaking and Continuous Casting Process Aiming at Power Saving and Carbon Emissions Reducing. IEEE Robotics & Automation Letters, 2018, 3: 2849500.

    Google Scholar 

  8. Gong L., Xu Y.P., Ding B., Zhang Z.H., Huang Z.Q., Thermal management and structural parameters optimization of MCM-BGA 3D package model. International Journal of Thermal Sciences, 2020, 147: 106–120.

    Article  Google Scholar 

  9. Liu Z., Li Y., Xu W., Yin H., Gao J., Jin G., Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case. Energy, 2019, 173: 28–37.

    Article  Google Scholar 

  10. Wang J., Song H., Wang Y., Investigation on the micro-flow mechanism of enhanced oil recovery by low-salinity water flooding in carbonate reservoir. Fuel, 2020, 266: 117156.

    Article  Google Scholar 

  11. Wang J., Song H., Rasouli V., Killough J., An integrated approach for gas-water relative permeability determination in nanoscale porous media. Journal of Petroleum Science and Engineering, 2019, 173: 237–245.

    Article  Google Scholar 

  12. Xu Q., Liu L., Feng J., Qiao L., Yu C., Shi W., Ding C., Zang Y., Chang C., Xiong Y., Ding Y., A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 2020, 149: 119189.

    Article  Google Scholar 

  13. Li-Li C., Shou-Jun L., Song Y., Cong Z., Yu-Chuan M.A., Wen-Guang D.U., Ju S., Zhi-Qiang H., Technical progress of the control of NO_X emission in carbon based fuel combustion process. Applied Chemical Industry, 2018, 10: 2279–2286.

    Google Scholar 

  14. Di Iorio X., Magno A., Mancaruso Z., Vaglieco B.M., Analysis of the effects of diesel/methane dual fuel combustion on nitrogen oxides and particle formation through optical investigation in a real engine. Fuel Processing Technology, 2017, 159: 200–210.

    Article  Google Scholar 

  15. Elbaz A.M., Moneib H.A., Shebil K.M., Roberts W.L., Low NOx - LPG staged combustion double swirl flames. Renewable Energy, 2019, 138: 303–315.

    Article  Google Scholar 

  16. Reijnders J., Boot M., de Goey P., Impact of aromaticity and cetane number on the soot-NOx trade-off in conventional and low temperature combustion. Fuel, 186: 24–34.

  17. Xu Q., Feng J., Analysis of nozzle designs on zoned and staged double P-type gas-fired radiant tube. Applied Thermal Engineering, 2017, 114: 44–50.

    Article  Google Scholar 

  18. Karthickeyan V., Thiyagarajan S., Geo V.E., Ashok B., Nanthagopal K., Chyuan O.H., Vignesh R., Simultaneous reduction of NOx and smoke emissions with low viscous biofuel in low heat rejection engine using selective catalytic reduction technique. Fuel, 2019, 255: 115854.

    Article  Google Scholar 

  19. Flamme M., Low NOx combustion technologies for high temperature applications. Energy Conversion and Management, 2001, 42: 1919–1935.

    Article  Google Scholar 

  20. Xu Q., Feng J., Analysis of nozzle gas speed on the performance of the zoned and staged gas-fired radiant tube. Applied Thermal Engineering, 2017, 118: 734–741.

    Article  Google Scholar 

  21. Almeida A.L.M.D.S., Marques Laranjeira R., Monteiro L.M.P., A. dos Santos, E. Caetano Fernandes, 1D model for a low NOx ejector-pump like burner. Experimental Thermal and Fluid Science, 2019, 100: 171–192.

    Article  Google Scholar 

  22. Sorrentino G., Sabia P., Bozza P., Ragucci R., de Joannon M., Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. Applied Energy, 2019, 254: 113676.

    Article  Google Scholar 

  23. Xie Y., Tu Y., Jin H., Luan C., Wang Z., Liu H., Numerical study on a novel burner designed to improve MILD combustion behaviors at the oxygen enriched condition. Applied Thermal Engineering, 2019, 152: 686–696.

    Article  Google Scholar 

  24. Hu Y.Q., Naito S., Kobayashi N., et al. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel, 2000, 79(15): 1925–1932.

    Article  Google Scholar 

  25. Yang W., Blasiak W., Chemical Flame Length and Volume in Liquified Propane Gas Combustion Using High-Temperature and Low-Oxygen-Concentration Oxidizer. Energy & Fuels, 2004, 18: 1329–1335.

    Article  Google Scholar 

  26. Xu J., Sun R., Ismail T.M., et al. Effect of Oxygen Concentration on NO Formation during Coal Char Combustion[J]. Energy & fuels, 2017, 31(7): 7502–7509.

    Article  Google Scholar 

  27. Souri A.H., Choi Y., Shuai P., Curci G., Nowlan C.R., Janz S.J., Kowalewski M.G., Liu J., Herman J.R., Weinheimer A.J., First Top - Down Estimates of Anthropogenic NOx Emissions Using High - Resolution Airborne Remote Sensing Observations. Journal of Geophysical Research Atmospheres, 2018, 184: 157.

    Google Scholar 

  28. Li M., Klimont Z., Zhang Q., Martin R.V., Zheng B., Heyes C., Cofala J., Zhang Y., He K., Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China. Atmospheric Chemistry & Physics, 2018, 18: 1–28.

    Article  ADS  Google Scholar 

  29. Jing W., Zheng K., Singh R., Lou H., Hao J., Wang B., Cheng F., Numerical simulation and cold experimental research of a low-NOx combustion technology for pulverized low-volatile coal. Applied Thermal Engineering, 2017, 114: 498–510.

    Article  Google Scholar 

  30. Zhu S., Lyu Q., Zhu J., Wu H., Wu G., Effect of Air Distribution on NOx Emissions of Pulverized Coal and Char Combustion Preheated by a Circulating Fluidized Bed. Energy & Fuels, 2018, 32: 7909–7915.

    Article  Google Scholar 

  31. Xiwei K.E., Cai R., Yang H., Zhang M., Zhang H., Yuxin W.U., Junfu L., Liu Q., Jingfeng L.I., Formation and Ultra-low Emission of NO_x for Circulating Fluidized Bed Combustion. Proceedings of the Csee, 2018, 38: 390–396.

    Google Scholar 

  32. Li F.L., Cao B., Tian Q., Analysis of Ejector Performance Using 1-D Model. Applied Mechanics & Materials, 2013, 253–255: 781–785.

    Article  ADS  Google Scholar 

  33. Xu Q., Wang K., Feng J., Ding C., Yu C., Du Z., Zang Y., Performance Analysis of Novel Flue Gas Self-Circulated Burner Based on Low-NOx Combustion. Journal of Energy Engineering, 2020, 146(2): 04019041.

    Article  Google Scholar 

  34. Xu Q., Zou Z., Chen Y., Wang K., Du Z., Feng J., Ding C., Bai Z., Zang Y., Xiong Y., Performance of a novel-type of heat flue in a coke oven based on high-temperature and low-oxygen diffusion combustion technology. Fuel, 2020, 267: 117160.

    Article  Google Scholar 

  35. Xu Q., Feng J., Zhou J., Liu L., Zang Y., Fan H., Study of a new type of radiant tube based on the traditional M-type structure. Applied Thermal Engineering, 2019, 150: 849–857.

    Article  Google Scholar 

  36. Lei S., Ji C., Wang S., Cong X., Teng S., Du W., Combustion and emissions characteristics of a S.I. engine fueled with gasoline-DME blends under different spark timings. Fuel, 2018, 211: 11–17.

    Article  Google Scholar 

  37. Sorrentino G., Sabia P., Joannon M.D., Bozza P., Ragucci R., Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. Fuel, 2018, 233: 207–214.

    Article  Google Scholar 

  38. Huang Y., Man Z., Lyu J., Yang H., Liu Q., Modeling study on effects of intraparticle mass transfer and secondary reactions on oil shale pyrolysis. Fuel, 2018, 221: 240–248.

    Article  Google Scholar 

  39. Liu L., Feng L., Xu Q., Chen Y., Anomalous diffusion in comb model subject to a novel distributed order time fractional Cattaneo-Christov flux. Applied Mathematics Letters, 2020, 102: 106116.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang S., Wang T., Zhang Z.Q., Wang M., Applications of the Orthogonal Test Method in the Numerical Simulation Study of Waveform Plate Separators. Journal of Engineering for Thermal Energy & Power, 2014, 39: 35–39.

    Google Scholar 

  41. Wen J., Fu Y., X. Bao, Y. Liu, G. Xu, Flow resistance and convective heat transfer performances of airflow through helical-tube bundles. International Journal of Heat and Mass Transfer, 2019, 130: 778–786.

    Article  Google Scholar 

  42. Lofberg J., YALMIP: A toolbox for modeling and optimization in MATLAB. IEEE International Symposium on Computer Aided Control Systems Design, 2004.

  43. Bui V.T., Kalugin V.T., Lapygin V.I., A.I. Khlupnov, Numerical study of the influence of flow blockage on the aerodynamic coefficients of models in low-speed wind tunnels. Thermophysics & Aeromechanics, 2017, 24: 857–866.

    Article  ADS  Google Scholar 

  44. Xu Q., Feng J., Zhang S., Combined effects of different temperature and pressure loads on the “L”-type large-diameter buried pipeline. International Journal of Heat and Mass Transfer, 2017, 111: 953–961.

    Article  Google Scholar 

  45. Bo L., Luo Z., Bo Z., Qin X., Particle mixing and separation performance of gas-solid separation fluidized beds containing binary mixtures. Fuel, 2018, 226: 462–471.

    Article  Google Scholar 

  46. Pang Z., Lyu X., Zhang F., Wu T., Gao Z., Geng Z., Luo B.M., The macroscopic and microscopic analysis on the performance of steam foams during thermal recovery in heavy oil reservoirs. Fuel, 2018, 233: 166–176.

    Article  Google Scholar 

  47. Tu Y., Su K., Liu Y., Wang Z., Xie Y., Zheng C., Li W., MILD combustion of natural gas using low preheating temperature air in an industrial furnace. Fuel Processing Technology, 2017, 156: 72–81.

    Article  Google Scholar 

  48. Su S., Xiang J., Sun L., et al. Application of gaseous fuel reburning for controlling nitric oxide emissions in boilers. Fuel Processing Technology, 2009, 90(3): 396–402.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Environmental and Energy Base for International Science & Technology Cooperation. And this work is supported by the Fundamental Research Funds for the Central Universities of China (FRF-TP-18-074A1, FRF-BD-20-09A), the China Postdoctoral Science Foundation (No. 2019M650491), and the National Natural Science Foundation of China (No. 11801029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihui Liu or Zhiwei Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Akkurt, N., Yang, G. et al. Effects of Optimized Operating Parameters on Combustion Characteristics and NOx Emissions of a Burner based on Orthogonal Analysis. J. Therm. Sci. 30, 1212–1223 (2021). https://doi.org/10.1007/s11630-020-1347-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1347-6

Keywords

Navigation