Skip to main content
Log in

Influence of \(NO_2^ - \) on the Microscopic Structure and Physical Properties of the Binary Nitrate Salts: a Molecular Dynamics Simulation Study

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation method was used to study the influence of \(NO_2^ - \) on both the structure and properties of the binary nitrate salts (60 wt.% NaNO3 + 40 wt.% KNO3). The density and viscosity of the mixtures were experimentally measured and the simulation results met well with the experimental ones. The simulation results showed that, with the addition of \(NO_2^ - \), the ionic clusters tended to loose and the mobilities of all the ions tended to increase. The density, viscosity, and heat capacity decreased while the thermal conductivity increased with the increase of +++ concentration. The correlation between the microscopic structure and physical properties of the mixtures were discussed and revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández A.G., Ushak S., Galleguillos H., et al., Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Applied Energy, 2014, 119: 131–140.

    Article  Google Scholar 

  2. Peng Q., Yang X., Ding J., et al., Design of new molten salt thermal energy storage material for solar thermal power plant. Applied Energy, 2013, 112: 682–689.

    Article  Google Scholar 

  3. Wang T., Mantha D., Reddy R.G., Novel low melting point quaternary eutectic system for solar thermal energy storage. Applied Energy, 2013, 102: 1422–1429.

    Article  Google Scholar 

  4. Cordaro J.G., Rubin N.C., Bradshaw R.W., Multicomponent molten salt mixtures based on nitrate/ nitrite anions. Journal of Solar Energy Engineering, 2011, 133(1): 011014.

    Article  Google Scholar 

  5. Bradshaw R.W., Cordaro J.G., Siegel N.P., Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. Jacksonville, Florida, USA, 2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 2, paper No. ES2008-54174, pp. 631–637.

    Google Scholar 

  6. Yamaguchi T., Okada I., Ohtaki H., et al., X-ray and neutron diffraction and molecular dynamics simulation of molten lithium and rubidium nitrates. Molecular Physics, 1986, 58(2): 349–364.

    Article  ADS  Google Scholar 

  7. Adya A.K., Takagi R., Kawamura K., et al., Structural determination of molten NaNO3, NaNO2 and their eutectic mixture by molecular dynamics simulation and X-ray diffraction. Molecular Physics, 1987, 62(1): 227–238.

    Article  ADS  Google Scholar 

  8. Kato T., Machida K., Oobatake M., et al., Vibrational dephasing in computer simulated molten LiNO3. The Journal of Chemical Physics, 1990, 93(6): 3970.

    Article  ADS  Google Scholar 

  9. Kato T., Machida K., Oobatake M., et al., Ionic dynamics in computer simulated molten LiNO3. III. Effect of the potential well on the translational and reorientational motions. The Journal of Chemical Physics, 1990, 92(9): 5506.

    Google Scholar 

  10. Kato T., Machida K., Oobatake M., et al., Ionic dynamics in computer simulated molten LiNO3. I. Translational and reorientational motion. The Journal of Chemical Physics, 1988, 89(5): 3211.

    Article  ADS  Google Scholar 

  11. Kato T., Machida K., Oobatake M., et al., Ionic dynamics in computer simulated molten LiNO3. II. Tumbling and spinning motions of nitrate ions. The Journal of Chemical Physics, 1988, 89(12): 7471.

    Article  ADS  Google Scholar 

  12. Ribeiro M.C.C., On the Chemla effect in molten alkali nitrates. The Journal of Chemical Physics, 2002, 117(1): 266.

    Article  ADS  Google Scholar 

  13. Jayaraman S., Thompson A.P, von Lilienfeld O.A., et al., Molecular simulation of the thermal and transport properties of three alkali nitrate salts. Industrial & Engineering Chemistry Research, 2010, 49(2): 559–571.

    Article  Google Scholar 

  14. Ni H., Wu J., Sun Z., et al., Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage. Renewable Energy, 2019, 136: 955–967.

    Article  Google Scholar 

  15. Peng Q., Ding J., Wei X., et al., The preparation and properties of multi-component molten salts. Applied Energy, 2010, 87(9): 2812–2817.

    Article  Google Scholar 

  16. Peng Q., Wei X., Ding J., et al., High-temperature thermal stability of molten salt materials. International Journal of Energy Research, 2008, 32(12): 1164–1174.

    Article  Google Scholar 

  17. Hu X., Yu Z., Gao B., et al., Equilibrium between \(NO_3 - \) and \(NO_2 - \) in KNO3-NaNO2 melts: a Raman spectra study. Chinese Optics Letters, 2014, 12(9): 96–100.

    Google Scholar 

  18. Hu X., Li Y., Yu Z., et al., Thermal stability of sodium nitrate-sodium nitrite melts: A Raman spectra study. Spectroscopy Letters, 2018, 51(7): 350–355.

    Article  ADS  Google Scholar 

  19. Lynden-Bell R.M., Impey R.W., Klein M.L., Investigation of the lattice vibrations of solid NaNO2 by means of molecular dynamics calculations. Chemical physics, 1986, 109(1): 25–33.

    Article  ADS  Google Scholar 

  20. Janz G.J., Mikawa Y., The evaluation of Urey-Bradley force constants in planar XY3 type molecules. Journal of Molecular Spectroscopy, 1960, 1: 92–100.

    Google Scholar 

  21. Hisatsune I.C., Devlin J.P, Califano S., Urey-Bradley potential constants in nitrogen dioxide, nitrite and dinitrogen tetroxide. Spectrochimica Acta, 1960, 16: 450–458.

    Article  ADS  Google Scholar 

  22. Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.

    Article  ADS  Google Scholar 

  23. Browna W.M., Wang P., Plimpton S.J., et al., Implementing molecular dynamics on hybrid high performance computers - short range forces. Computer Physics Communications, 2011, 182: 898–911.

    Article  ADS  Google Scholar 

  24. Cheng J., Zhang P., An X., et al., A device for measuring the density and liquidus temperature of molten fluorides for heat transfer and storage. Chinese Physics Letters, 2013, 30(12): 126501.

    Article  Google Scholar 

  25. Sun Z., Hu C., Ni H., et al., Influence of impurity \(NO_4 - \) on the thermal performance of molten nitrates used for thermal energy storage. Energy Technology, 2018, 10(6): 2065–2073.

    Article  Google Scholar 

  26. Pauvert O., Salanne M., Zanghi D., et al., Ion specific effects on the structure of molten AF-ZrF4 systems (A+= Li+, Na+, and K+). The Journal of Physical Chemistry B, 2011, 115(29): 9160–9167.

    Article  Google Scholar 

  27. Levesque M., Sarou-Kanian V, Salanne M., et al., Structure and dynamics in yttrium-based molten rare earth alkali fluorides. The Journal of Chemical Physics, 2013, 138(18): 184503.

    Article  ADS  Google Scholar 

  28. Corradini D., Madden P.A., Salanne M., Coordination numbers and physical properties in molten salts and their mixtures. Faraday Discuss, 2016, 190: 471–486.

    Article  ADS  Google Scholar 

  29. Duncan A., Introduction to chemical engineering processes. Global Media, Delhi, 2009.

    Google Scholar 

  30. Wang J., Sun Z., Lu G, et al., Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides. The Journal of Physical Chemistry B, 2014, 118(34): 10196–10206.

    Article  Google Scholar 

  31. Wang J., Wu J., Sun Z., et al., Molecular dynamics study of the transport properties and local structures of molten binary systems (Li, Na)Cl, (Li, K)Cl and (Na, K)Cl. Journal of Molecular Liquids, 2015, 209: 498–507.

    Article  Google Scholar 

  32. Alder B.J., Wainwright T.E., Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. The Journal of Chemical Physics, 1960, 33(5): 1439–1451.

    Article  ADS  MathSciNet  Google Scholar 

  33. Muller-Plathe F., Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Physical Review E., 1999, 59(5): 4894–4898.

    Article  ADS  Google Scholar 

  34. Bordat P., Müller-Plathe F., The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics. The Journal of Chemical Physics, 2002, 116(8): 3362–3369.

    Article  ADS  Google Scholar 

  35. Ding J., Pan G., Du L., et al., Molecular dynamics simulations of the local structures and transport properties of Na2CO3 and K2CO3. Applied Energy, 2018, 227: 555–563.

    Article  Google Scholar 

  36. Tenney C.M., Maginn E.J., Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. The Journal of Chemical Physics, 2010, 132(1): 14103.

    Article  Google Scholar 

  37. Ni H., Wu J., Sun Z., et al., Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study. Chemical Engineering Journal, 2019, 377: 120029.

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by Grant 51774144 and U1407126 from the National Natural Science Foundation of China, and Grant 2018YFC1903803 from the National Key R&D Program of China. The following local government funding also supported this project: Grant 2017-ZJ-727 and 2018-ZJ-738 from Applied basic research of Qinghai Province, Grant 2015-GX-Q19A from Capacity Building of Qinghai Engineering Research Center for Integrated Utilization of Salt Lake and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze Sun or Guimin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Wu, J., Sun, Z. et al. Influence of \(NO_2^ - \) on the Microscopic Structure and Physical Properties of the Binary Nitrate Salts: a Molecular Dynamics Simulation Study. J. Therm. Sci. 29, 464–476 (2020). https://doi.org/10.1007/s11630-020-1226-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1226-1

Keywords

Navigation