Skip to main content

Advertisement

Log in

Review on Development of Small Point-Focusing Solar Concentrators

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The technology of small point-focusing concentrator of solar energy has been developing rapidly in recent years owing to its compact structure and high collecting efficiency. This report presents important developments of small point-focusing concentrator in the past decade. This kind of solar concentrator refers to the parabolic dish concentrator, the point-focusing Fresnel lens, and the Scheffler reflector. Technological advances of these concentrators and the related performances have been presented. There are three main mirror fabrication technologies for dish concentrator, which are high polishing metal, silver-glass mirror and vacuum-membrane. Polymethyl methacrylate is widely used as material in Fresnel lens. Many scholars have proposed new lens shape to improve the uniformity of focusing. The Scheffler reflector has a characteristic of fixed focus, but its design parameters are not perfect so current research focuses on the theoretical calculation of the mirror. In addition, typical applications of the small point-focusing concentrator in photovoltaic system, solar thermal system, solar chemical system, and day-lighting system are summarized. Upon listing the important publications in open literature, a category of main applications of such kind of solar collector is provided based on the working characteristics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guney M.S., Solar power and application methods. Renewable and Sustainable Energy Reviews, 2016, 57: 776–785.

    Google Scholar 

  2. Rajendran D.R., Sundaram E.G., Jawahar P., Experimental studies on the thermal performance of a parabolic dish solar receiver with the heat transfer fluids SiC+ water nano fluid and water. Journal of Thermal Science, 2017, 26(3): 263–272.

    ADS  Google Scholar 

  3. Barlev D., Vidu R., Stroeve P., Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, 2011, 95(10): 2703–2725.

    Google Scholar 

  4. Schiel W., Keck T., Parabolic dish concentrating solar power (CSP) systems. Concentrating Solar Power Technology, Principles, Developments and Applications, Woodhead Publishing Series in Energy, UK, 2013, pp.: 284–322.

    Google Scholar 

  5. Poullikkas A., Kourtis G., Hadjipaschalis I., Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renewable & Sustainable Energy Reviews, 2010, 14(9): 2772–2783.

    Google Scholar 

  6. Islam M.T., Huda N., Abdullah A.B., et al., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews, 2018, 91: 987–1018.

    Google Scholar 

  7. Andraka C.E., Dish Stirling advanced latent storage feasibility. Energy Procedia, 2014, 49: 684–693.

    Google Scholar 

  8. Yeh N., Analysis of spectrum distribution and optical losses under Fresnel lenses. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2926–2935.

    Google Scholar 

  9. Leutz R., Suzuki A., Nonimaging Fresnel lenses: design and performance of solar concentrators. Springer, 2013.

    Google Scholar 

  10. Xie W.T., Dai Y.J., Wang R.Z., Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens. Energy Conversion and Management, 2011, 52(6): 2417–2426.

    Google Scholar 

  11. Scheffler W., Bruecke S., von Werdenbergstr G., Introduction to the revolutionary design of Scheffler reflectors. 2006 Solar Cookers and Food Processing International Conference, Granada, Spain, 2006, pp. 12–16.

    Google Scholar 

  12. Kumar A., Prakash O., Kaviti A.K., A comprehensive review of Scheffler solar collector. Renewable & Sustainable Energy Reviews, 2017, 77: 890–898.

    Google Scholar 

  13. Akhade M.A.M., Patil R.J., Principal D., et al., Review of Scheffler reflector. International Journal of Innovationas in Engineering Research and Technology, 2015, 2: 1–5.

    Google Scholar 

  14. Coventry J., Andraka C., Dish systems for CSP. Solar Energy, 2017, 152: 140–170.

    ADS  Google Scholar 

  15. Hafez A.Z., Soliman A., El-Metwally K.A., et al., Design analysis factors and specifications of solar dish technologies for different systems and applications. Renewable and Sustainable Energy Reviews, 2017, 67: 1019–1036.

    Google Scholar 

  16. Pavlović S.R., Stefanović V.P., Suljković S.H., Optical modeling of a solar dish thermal concentrator based on square flat facets. Thermal Science, 2014, 18(3): 989–998.

    Google Scholar 

  17. Bakos G.C., Antoniades C., Techno-economic appraisal of a dish/stirling solar power plant in Greece based on an innovative solar concentrator formed by elastic film. Renewable Energy, 2013, 60: 446–453.

    Google Scholar 

  18. Xiao G., Yang T., Ni D., et al., A model-based approach for optical performance assessment and optimization of a solar dish. Renewable Energy, 2017, 100: 103–113.

    Google Scholar 

  19. Eccher M., Turrini S., Salemi A., et al., Construction method and optical characterization of parabolic solar modules for concentration systems. Solar Energy, 2013, 94(5): 19–27.

    ADS  Google Scholar 

  20. Li L., Dubowsky S., A new design approach for solar concentrating parabolic dish based on optimized flexible petals. Mechanism & Machine Theory, 2011, 46(10): 1536–1548.

    MATH  Google Scholar 

  21. Cameron M., Ahmed N.A., A novel solar concentrating dish for reduced manufacturing cost. Applied Mechanics and Materials, 2014, 607: 368–375.

    Google Scholar 

  22. Pavlović S.R., Daabo A.M., Bellos E., et al., Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production, 2017, 150: 75–92.

    Google Scholar 

  23. Stefanovic V.P., Pavlović S.R., Bellos E., et al., A detailed parametric analysis of a solar dish collector. Sustainable Energy Technologies and Assessments, 2018, 25: 99–110.

    Google Scholar 

  24. Hijazi H., Mokhiamar O., Elsamni O., Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal, 2016, 55(1): 1–11.

    Google Scholar 

  25. Zhou Z., Cheng Q., Li P., et al., Non-imaging concentrating reflectors designed for solar concentration systems. Solar Energy, 2014, 103: 494–501.

    ADS  Google Scholar 

  26. Xia X.L., Dai G.L., Shuai Y., Experimental and numerical investigation on solar concentrating characteristics of a sixteen-dish concentrator. International Journal of Hydrogen Energy, 2013, 37(24): 18694–18703.

    Google Scholar 

  27. Huang X., Yuan Y., Shuai Y., et al., Development of a multi-layer and multi-dish model for the multi-dish solar energy concentrator system. Solar Energy, 2014, 107: 617–627.

    ADS  Google Scholar 

  28. Chang Q.H., Study on a concentrator of confocal configuration composed of spherical facets with identical aperture and identical radius of curvature. Renewable Energy, 2017, 111: 655–658.

    Google Scholar 

  29. Perez-Enciso R., Gallo A., Riveros-Rosas D., et al., A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator. Renewable Energy, 2016, 93: 115–124.

    Google Scholar 

  30. Zanganeh G., Bader R., Pedretti A., et al., A solar dish concentrator based on ellipsoidal polyester membrane facets. Solar Energy, 2013, 86(1): 40–47.

    ADS  Google Scholar 

  31. Schmitz M., Ambrosetti G., Cooper T., et al., On-sun optical characterization of a solar dish concentrator based on elliptical vacuum membrane facets. Solar Energy, 2017, 153: 732–743.

    ADS  Google Scholar 

  32. Schmitz M., Wiik N., Ambrosetti G., et al., A 6-focus high-concentration photovoltaic-thermal dish system. Solar Energy, 2017, 155: 445–463.

    ADS  Google Scholar 

  33. Ancona M.A., Bianchi M., Diolaiti E., et al., A novel solar concentrator system for combined heat and power application in residential sector. Applied Energy, 2017, 185: 1199–1209.

    Google Scholar 

  34. Pavlović S., Vasiljević D., Stefanović V., et al., Optical model and numerical simulation of the new offset type parabolic concentrator with two types of solar receivers. Facta Universitatis, Series: Mechanical Engineering, 2015, 13(2): 169–180.

    Google Scholar 

  35. Kumar V., Shrivastava R.L., Untawale S.P., Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renewable and Sustainable Energy Reviews, 2015, 44: 376–390.

    Google Scholar 

  36. Xie W.T., Dai Y.J., Wang R.Z., et al., Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, 2011, 15(6): 2588–2606.

    Google Scholar 

  37. Pan J.W., Huang J.Y., Wang C.M., et al., High concentration and homogenized Fresnel lens without secondary optics element. Optics Communications, 2011, 284(19): 4283–4288.

    ADS  Google Scholar 

  38. Zhuang Z., Yu F., Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Optics & Laser Technology, 2014, 60: 27–33.

    ADS  Google Scholar 

  39. Li D., Xuan Y., Concept design and simulation of a concentration lens with uniform square irradiance. Optics Communications, 2017, 400: 9–19.

    ADS  Google Scholar 

  40. Languy F., Lenaerts C., Loicq J., et al., Performance of solar concentrator made of an achromatic Fresnel doublet measured with a continuous solar simulator and comparison with a singlet. Solar Energy Materials and Solar Cells, 2013, 109: 70–76.

    Google Scholar 

  41. Michel C., Loicq J., Languy F., et al., Optical study of a solar concentrator for space applications based on a diffractive/refractive optical combination. Solar Energy Materials and Solar Cells, 2014, 120: 183–190.

    Google Scholar 

  42. Kuo C.F.J., Huang C.C., Kuo Y.L., Analysis of processing parameters in fabrication of Fresnel lens solar collector. Energy Conversion and Management, 2013, 57: 33–41.

    Google Scholar 

  43. Ke J., Zhao C., Guan Z., High convergence efficiency design of flat Fresnel lens with large aperture. 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, Proceedings of the SPIE, 2018, 10619: 106190V. DOI: 10.1117/12.2295572.

    Google Scholar 

  44. Zou Y.H., Yang T.S., Optical performance analysis of a HCPV solar concentrator yielding highly uniform cell irradiance. Solar Energy, 2014, 107: 1–11.

    ADS  Google Scholar 

  45. Vallerotto G., Victoria M., Askins S., et al., Improvements in the manufacturing process of achromatic doublet on glass (ADG) Fresnel lens. AIP Conference Proceedings. AIP Publishing, 2018, 2013(1): 030009.

    Google Scholar 

  46. Kritchman E.M., Friesem A.A., Yekutieli G., Highly concentrating Fresnel lenses. Applied Optics, 1979, 18(15): 2688–2695.

    ADS  Google Scholar 

  47. Ma X., Zheng H., Tian M., Optimize the shape of curved-Fresnel lens to maximize its transmittance. Solar Energy, 2016, 127: 285–293.

    ADS  Google Scholar 

  48. Pham T.T., Vu N.H., Shin S., Design of curved Fresnel lens with high performance creating competitive price concentrator photovoltaic. Energy Procedia, 2018, 144: 16–32.

    Google Scholar 

  49. Zamora P., Benítez P., Yang L., et al., Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator. Highand Low Concentrator Systems for Solar Electric Applications VII. International Society for Optics and Photonics, 2013, 8468: 84680D.

    Google Scholar 

  50. Akisawa A., Hiramatsu M., Ozaki K., Design of domeshaped non-imaging Fresnel lenses taking chromatic aberration into account. Solar Energy, 2013, 86(3): 877–885.

    ADS  Google Scholar 

  51. Yeh N., Optical geometry approach for elliptical Fresnel lens design and chromatic aberration. Solar Energy Materials and Solar Cells, 2009, 93(8): 1309–1317.

    Google Scholar 

  52. Yeh N., Yeh P., Analysis of point-focused, non-imaging Fresnel lenses’ concentration profile and manufacture parameters. Renewable Energy, 2016, 85: 514–523.

    Google Scholar 

  53. Hsu F.M., Lee C.C., Fang W., Formation and curvature tuning of micro lens using surface tension and hydraulic pressure assisted molding process. Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on. IEEE, 2013, pp. 327–330.

    Google Scholar 

  54. Munir A., Hensel O., Scheffler W., Design principle and calculations of a Scheffler fixed focus concentrator for medium temperature applications. Solar Energy, 2010, 84(8): 1490–1502.

    ADS  Google Scholar 

  55. Bajaj R., Raj A., Srinivas T., Mathematical modelling and analysis of variation in surface of solar Scheffler concentrator for seasonal variations. Energy Efficient Technologies for Sustainability (ICEETS), 2016 International Conference on. IEEE, 2016, pp. 78–83.

    Google Scholar 

  56. Reddy D.S., Khan M.K., Alam M.Z., et al., Design charts for Scheffler reflector. Solar Energy, 2018, 163: 104–112.

    ADS  Google Scholar 

  57. Dib E.A., Fiorelli F.A.S., Analysis of the image produced by Scheffler paraboloidal concentrator. Energy (IYCE), 2015 5th International Youth Conference on. IEEE, 2015, pp. 1–7.

    Google Scholar 

  58. Ruelas J., Palomares J., Pando G., Absorber design for a Scheffler-type solar concentrator. Applied Energy, 2015, 154: 35–39.

    Google Scholar 

  59. Ruelas J., Velázquez N., Beltrán R., Opto-geometric performance of fixed-focus solar concentrators. Solar Energy, 2017, 141: 303–310.

    ADS  Google Scholar 

  60. Zhang J., Cho H., Luck R., et al., Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US. Applied Energy, 2018, 212: 895–908.

    Google Scholar 

  61. Schmitz M., Wiik N., Ambrosetti G., et al., A 6-focus high-concentration photovoltaic-thermal dish system. Solar Energy, 2017, 155: 445–463.

    ADS  Google Scholar 

  62. Tao T., Zheng H.F., Su Y.H., et al., A novel combined solar concentration/wind augmentation system: Constructions and preliminary testing of a prototype. Applied Thermal Engineering, 2011, 31(17–18): 3664–3668.

    Google Scholar 

  63. Chen H., Ji J., Pei G., et al., Experimental and numerical comparative investigation on a concentrating photovoltaic system. Journal of Cleaner Production, 2018, 174: 1288–1298.

    Google Scholar 

  64. Xu N., Ji J., Sun W., et al., Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens. Applied Energy, 2016, 168: 269–281.

    Google Scholar 

  65. Xu N., Ji J., Sun W., et al., Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells. Energy conversion and management, 2015, 100: 191–200.

    Google Scholar 

  66. Renno C., Petito F., Experimental and theoretical model of a concentrating photovoltaic and thermal system. Energy Conversion and Management, 2016, 126: 516–525.

    Google Scholar 

  67. Wu S.Y., Xiao L., Cao Y., et al., A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Applied Energy, 2010, 87(2): 452–462.

    Google Scholar 

  68. Zhang S., Wu Z.H., Zhao R.D., et al., Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power. Energy Conversion and Management, 2014, 85: 718–726.

    Google Scholar 

  69. Nia M.H., Nejad A.A., Goudarzi A.M., et al., Cogeneration solar system using thermoelectric module and Fresnel lens. Energy Conversion and Management, 2014, 84: 305–310.

    Google Scholar 

  70. Hussain T., Islam M.D., Kubo I., et al., Study of heat transfer through a cavity receiver for a solar powered advanced Stirling engine generator. Applied Thermal Engineering, 2016, 104: 751–757.

    Google Scholar 

  71. Aksoy F., Karabulut H., Performance testing of a Fresnel/Stirling micro solar energy conversion system. Energy Conversion and Management, 2013, 75: 629–634.

    Google Scholar 

  72. Lecuona A., Nogueira J.I., Ventas R., et al., Solar cooker of the portable parabolic type incorporating heat storage based on PCM. Applied Energy, 2013, 111: 1136–1146.

    Google Scholar 

  73. Kumar A., Shukla S.K., Kumar A., Heat loss analysis: An approach toward the revival of parabolic dish type solar cooker. International Journal of Green Energy, 2018: 15(2): 96–105.

    Google Scholar 

  74. Mohammed I.L., Design and development of a parabolic dish solar water heater. International Journal of Engineering Research and Applications, 2013, 2(1): 822–830.

    Google Scholar 

  75. Badran A.A., Yousef I.A., Joudeh N.K., et al., Portable solar cooker and water heater. Energy Conversion and Management, 2010, 51(8): 1605–1609.

    Google Scholar 

  76. Valmiki M.M., Li P., Heyer J., et al., A novel application of a Fresnel lens for a solar stove and solar heating. Renewable Energy, 2011, 36(5): 1614–1620.

    Google Scholar 

  77. Rupesh P., Awari G.K., Singh M.P., Experimental analysis of Scheffler reflector water heater. Thermal Science, 2011, 15(3): 58–58.

    Google Scholar 

  78. Müller C., EcoAndina F., Arias C., Solar community bakeries on the Argentinean Altiplano. International Solar Food Processing Conference, Indore, India, 2009: 14–16.

    Google Scholar 

  79. Dafle V.R., Shinde N.N., Design, development & performance evaluation of concentrating monoaxial Scheffler technology for water heating and low temperature industrial steam application. International Journal of Engineering Research and Applications, 2013, 2(6): 1179–1186.

    Google Scholar 

  80. Prado G.O., Vieira L.G.M., Damasceno J.J.R., Solar dish concentrator for desalting water. Solar Energy, 2016, 136: 659–667.

    ADS  Google Scholar 

  81. Srithar K., Rajaseenivasan T., Karthik N., et al., Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renewable Energy, 2016, 90: 157–165.

    Google Scholar 

  82. Omara Z.M., Eltawil M.A., Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination, 2013, 326: 62–68.

    Google Scholar 

  83. Chandak A., Somani S.K., Dubey D., Design, development and testing of multieffect distiller/evaporator using Scheffler solar concentrators. Journal of Engineering Science and Technology, 2009, 4(3): 315–321.

    Google Scholar 

  84. Chandrashekara M., Yadav A., Experimental study of exfoliated graphite solar thermal coating on a receiver with a Scheffler dish and latent heat storage for desalination. Solar Energy, 2017, 151: 129–145.

    ADS  Google Scholar 

  85. Hanif M., Ramzan M., Aamir M., Drying of grapes using a dish type solar air heater. Journal of Agricultural Research, 2013, 50(3): 423–432.

    Google Scholar 

  86. Hadzicha M., Veynandtb F., Delcolb J., et al., Design of a solar coffee roaster for rural areas. Energy Procedia, 2014, 57: 3215–3224.

    Google Scholar 

  87. Bhasme S., Thosar A.G., Performance Analysis of Scheffler reflector used for solar dry cleaning. International Journal of Engineering Innovation and Research, 2015, 4(4): 640–644.

    Google Scholar 

  88. Wang F., Tan J., Ma L., et al., Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor. Energy Conversion and Management, 2015, 103: 419–430.

    Google Scholar 

  89. Zhao Y., Zhang Y., Li W., et al., Experimental investigation and thermodynamic analysis of effective hydrogen production driven by mid-and low-temperature solar heat. Journal of Cleaner Production, 2018, 176: 758–769.

    Google Scholar 

  90. Rathod V.P., Shete J., Bhale P.V., Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. International Journal of Hydrogen Energy, 2016, 41(1): 132–138.

    Google Scholar 

  91. Bicer Y., Sprotte A.F.V., Dincer I., Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications. Applied Energy, 2017, 197: 169–182.

    Google Scholar 

  92. Bicer Y., Dincer I., Experimental investigation of a PV-coupled photoelectrochemical hydrogen production system. International Journal of Hydrogen Energy, 2017, 42(4): 2512–2521.

    Google Scholar 

  93. Zeaiter J., Azizi F., Lameh M., et al., Waste tire pyrolysis using thermal solar energy: An integrated approach. Renewable Energy, 2018, 123: 44–51.

    Google Scholar 

  94. Zeaiter J., Ahmad M.N., Rooney D., et al., Design of an automated solar concentrator for the pyrolysis of scrap rubber. Energy Conversion and Management, 2015, 101: 118–125.

    Google Scholar 

  95. Nzihou A., Flamant G., Stanmore B., Synthetic fuels from biomass using concentrated solar energy—A review. Energy, 2013, 42(1): 121–131.

    Google Scholar 

  96. Zeng K., Gauthier D., Li R., et al., Solar pyrolysis of beech wood: Effects of pyrolysis parameters on the product distribution and gas product composition. Energy, 2015, 93: 1648–1657.

    Google Scholar 

  97. Chintala V., Kumar S., Pandey J.K., et al., Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 2017, 153: 482–492.

    Google Scholar 

  98. Han H.J., Riffat S.B., Lim S.H., et al., Fiber optic solar lighting: functional competitiveness and potential. Solar Energy, 2013, 94: 86–101.

    ADS  Google Scholar 

  99. Song J., Jin Z., Zhu Y., et al., Development of a fiber daylighting system based on the parallel mechanism and direct focus detection. Solar Energy, 2015, 115: 484–493.

    ADS  Google Scholar 

  100. Song J., Zhu Y., Tong K., et al., A note on the optic characteristics of daylighting system via PMMA fibers. Solar Energy, 2016, 136: 32–34.

    ADS  Google Scholar 

  101. Kim Y., Jeong H.J., Kim W., et al., A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens. Energy, 2017, 137: 449–456.

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Key Basic Research Program of China (No. 2015CB251303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxian Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yuan, Z., Zhao, Y. et al. Review on Development of Small Point-Focusing Solar Concentrators. J. Therm. Sci. 28, 929–947 (2019). https://doi.org/10.1007/s11630-019-1134-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1134-4

Keywords

Navigation