Skip to main content
Log in

Cu-Promoted Cobalt Oxide Film Catalyst for Efficient Gas Emissions Abatement

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Thin film catalysts have been recently reported as promising catalysts owing to their good catalytic activity and reduced material amount, leading to low-cost efficient catalysts for gaseous emissions control. Here, we report the slight loading of Cu in cobalt spinel using a one-step pulsed-spray evaporation chemical vapor deposition (PSE-CVD) synthesis technique for efficient short-chain volatile organic compounds (VOCs) emissions treatment. Crystalline structure and morphology analyses revealed nano-crystallite sizes and open-like morphology. The catalytic performance was evaluated through the complete oxidation of C3H6, as a short-chain representative model of VOCs, at a high gas hourly space velocity (GHSV). Very good activity was obtained towards the complete abatement of C3H6 at low temperature and no carbon monoxide (CO) was formed during the oxidation process. Slightly-promoted Co3O4 catalyst with Cu introduction resulted in high catalytic activity comparing to the performance of the catalysts in the literature, due to the high dispersion of Cu and high active surface oxygen amount. Moreover, to evaluate the capability of the used catalysts under near realistic reaction conditions, CO2 effect on the catalytic activity was performed and the catalyst exhibited very good results. Thus, the adopted slightly-doping strategy to tailor a high active catalyst at low temperature could establish a very promising route to strongly enhance the activity of such other catalysts towards gas emissions abatement at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkin M.E., Derwent R.G., Wallington T.J., Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation, Atmospheric Environment, 2017, 163: 128–137.

    Article  ADS  Google Scholar 

  2. Carter W.P.L., Development of ozone reactivity scales for volatile organic compounds, Journal of Air & Waste. 1994, 44: 881‒899.

    Google Scholar 

  3. Guo H., Ling Z.H., Cheng H.R., Simpson I.J., Lyu X.P., Wang X.M., Shao M., Lu H.X., Ayoko G., Zhang Y.L., et al., Tropospheric volatile organic compounds in China. Science of The Total Environment, 2017, 574: 1021–1043.

    Article  ADS  Google Scholar 

  4. Everaert K., Baeyens J., Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials, 2004, 109: 113–139.

    Article  Google Scholar 

  5. Heneghan C.S., Hutchings G.J., Taylor S.H., The destruction of volatile organic compounds by heterogeneous catalytic oxidation, Catalysis, 2014, 17: 105–151.

    Article  Google Scholar 

  6. Guo Z., Liu B., Zhang Q., Deng W., Wang Y., Yang Y., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry, Chemical Society Reviews, 2014, 43: 3480–3524.

    Article  Google Scholar 

  7. Liotta L.F., Catalytic oxidation of volatile organic compounds on supported noble metals, Applied Catalysis B: Environmental, 2010, 100: 403–412.

    Article  Google Scholar 

  8. Kamal M.S., Razzak S.A., Hossain M.M., Catalytic oxidation of volatile organic compounds (VOCs)-A review, Atmospheric Environment, 2016, 140: 117–134.

    Article  ADS  Google Scholar 

  9. Huang H., Xu Y., Feng Q., Leung D.Y.C., Low temperature catalytic oxidation of volatile organic compounds: a review, Catalysis Science & Technology, 2015, 5: 2649–2669.

    Article  Google Scholar 

  10. Wittstock A., Zielasek V., Biener J., Friend C.M., Bäumer M., Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature, Science, 2010, 327: 319–322.

    Article  ADS  Google Scholar 

  11. Zhang Z.X., Jiang Z., Shangguan W.F., Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review, Catalysis Today, 2016, 264: 270–278.

    Article  Google Scholar 

  12. Li W.B., Wang J.X., Gong H., Catalytic combustion of VOCs on non-noble metal catalysts, Catalysis Today, 2019, 148: 81–87.

    Article  Google Scholar 

  13. Chen M.S., Goodman D.W., The structure of catalytically active gold on Titania, Science, 2004, 306: 252–255.

    Article  ADS  Google Scholar 

  14. Ma H., Shi L., Tian Y., Role of a single shield in thermocouple measurements in hot air flow, Journal of Thermal Science, 2017, 26:523‒532.

    Google Scholar 

  15. Tian Z.Y., Herrenbrück H.J., Mountapmbeme Kouotou P., Vieker H., Beyer A., Gölzhäuser A., Kohse-Höinghaus K., Facile synthesis of catalytically active copper oxide from pulsed-spray evaporation CVD, Surface and Coatings Technology, 2013, 230: 33–38.

    Article  Google Scholar 

  16. Jiang Y., Li Y., Zhou P., Yu S., Sun W., Dou S., Enhanced reaction kinetics and structure integrity of Ni/SnO2 nanocluster toward high-performance lithium storage, ACS Applied Materials & Interfaces, 2015, 7: 26367–26373.

    Article  Google Scholar 

  17. El Kasmi A., Tian Z.Y., Vieker H., Beyer A., Chafik T., Innovative CVD synthesis of Cu2O catalysts for CO oxidation, Applied Catalysis B: Environmental, 2016, 186: 10–18.

    Article  Google Scholar 

  18. Jiang Y., Li Y., Yan M., Bahlawane N., Abnormal behaviors in electrical transport properties of cobaltdoped tin oxide thin films, Journal of Materials Chemistry, 2012, 22: 16060–16065.

    Article  Google Scholar 

  19. Tian Z.Y., Vieker H., Kouotou P.M., Beyer A., In situ characterization of Cu-Co oxides for catalytic application, Faraday Discussions, 2015, 177: 249–262.

    Article  ADS  Google Scholar 

  20. Zhou P., Wang X., Guan W., Zhang D., Fang L., Jiang Y., SnS2 nanowall arrays toward high-performance sodium storage, ACS Applied Materials & Interfaces, 2017, 9: 6979–6987.

    Article  Google Scholar 

  21. Jiang Y., Li Y., Sun W., Huang W., Liu J., Xu B., Jin C., Ma T., Wu C., Yan M., Spatially-confined lithiationdelithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries, Energy & Environmental Science, 2015, 8: 1471–1479.

    Article  Google Scholar 

  22. Kouotou P.M., Tian Z.Y., Mundloch U., Bahlawane N., Kohse-Höinghaus K., Controlled synthesis of Co3O4 spinel with Co(acac)3 as precursor, RSC Advances, 2012, 2: 10809–10812.

    Article  Google Scholar 

  23. Fan S.B., Pan G.F., Liang J., Tian Z.Y., Tailored synthesis of CoOx thin films for catalytic application, RSC Advances, 2015, 5: 97272–97278.

    Article  Google Scholar 

  24. Tian Z.Y., Bahlawane N., Vannier V., Kohse-Höinghaus K., Structure sensitivity of propene oxidation over Co-Mn spinels, Proceedings of the Combustion Institute. 2013, 34: 2261‒2268.

    Google Scholar 

  25. Tian Z.Y., Ngamou P.H.T., Vannier V., Kohse-Höinghaus K., Bahlawane N., Catalytic oxidation of VOCs over mixed Co-Mn oxides, Applied Catalysis B: Environmental, 2012, 117: 125–134.

    Article  Google Scholar 

  26. Kouotou P.M., Vieker H., Tian Z.Y., Ngamou P.H.T., Kasmi A.E., Beyer A., Gölzhäuser A., Kohse-Höinghaus K., Structure-activity relation of spinel-type Co-Fe oxides for low-temperature CO oxidation, Catalysis Science & Technology, 2014, 4: 3359–3367.

    Article  Google Scholar 

  27. Tian Z.Y., Mountapmbeme Kouotou P., El Kasmi A., Tchoua Ngamou P.H., Kohse-Höinghaus K., Vieker H., Beyer A., Gölzhäuser A., Low-temperature deep oxidation of olefins and DME over cobalt ferrite, Proceedings of the Combustion Institute, 2015, 35: 2207–2214.

    Article  Google Scholar 

  28. Tchoua N.P.H., El Kasmi A., Weiss T., Vieker H., Beyer A., Zielasek V., Kohse-Höinghaus K., Bäumer M., Investigation of the growth behaviour of Cobalt thin films from chemical vapour deposition, using directly coupled X-ray photoelectron spectroscopy, Zeitschrift Für Physikalische Chemie, 2015, 229: 1887–1905.

    Google Scholar 

  29. Li Y., Yu S., Yuan T., Yan M., Jiang Y., Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries, Journal of Power Sources, 2015, 282: 1–8.

    Article  ADS  Google Scholar 

  30. Fan S.B., Kouotou P.M., Weng J.J., Pan G.F., Tian Z.Y., Investigation on the structure stability and catalytic activity of Cu-Co binary oxides, Proceedings of the Combustion Institute, 2017, 36: 4375–4382.

    Article  Google Scholar 

  31. Li D., Liu X., Zhang Q., Wang Y., Wan H., Cobalt and copper composite oxides as efficient catalysts for preferential oxidation of CO in H2-rich stream, Catalysis Letters, 2009, 127: 377–385.

    Article  Google Scholar 

  32. Kuo C.H., Chen C.H., Huang M.H., Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm, Advanced Functional Materials, 2007, 17: 3773–3780.

    Article  Google Scholar 

  33. Gluhoi A.C., Bogdanchikova N., Nieuwenhuys B.E., The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria, Journal of Catalysis, 2015, 229: 154–162.

    Article  Google Scholar 

  34. Ivanova S., Petit C., Pitchon V., Application of heterogeneous gold catalysis with increased durability: Oxidation of CO and hydrocarbons at low temperature, Gold Bulletin, 2006, 39: 3–8.

    Article  Google Scholar 

  35. Gluhoi A.C., Bogdanchikova N., Nieuwenhuys B.E., Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene, Journal of Catalysis, 2005, 232: 96–101.

    Article  Google Scholar 

  36. Bao H., Chen X., Fang J., Jiang Z., Huang W., Structureactivity relation of Fe2O3-CeO2 composite catalysts in CO oxidation, Catalysis Letters, 2008, 125: 160–167.

    Article  Google Scholar 

  37. Doornkamp C., Ponec V., The universal character of the Mars and Van Krevelen mechanism, Journal of Molecular Catalysis A: Chemical, 2000, 162: 19–32.

    Article  Google Scholar 

  38. Pan G.F., Fan S.B., Liang J., Liu Y.X., Tian Z.Y., CVD synthesis of Cu2O films for catalytic application, RSC Advances, 2015, 5: 42477–42481.

    Article  Google Scholar 

  39. Tian Z.Y., Mountapmbeme Kouotou P., Bahlawane N., Tchoua Ngamou P.H., Synthesis of the catalytically active Mn3O4 spinel and its thermal properties, Journal of Physical Chemistry C, 2013, 117: 6218–6224.

    Article  Google Scholar 

  40. Tian Z.Y., Vieker H., Kouotou P.M., Beyer A., In situ characterization of Cu-Co oxides for catalytic application, Faraday Discussions, 2015, 177: 249–262.

    Article  ADS  Google Scholar 

  41. Liotta L.F., Ousmane M., Di Carlo G., Pantaleo G., Deganello G., Marcì G., Retailleau L., Giroir-Fendler A., Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity, Applied Catalysis A: General, 2008, 347: 81–88.

    Article  Google Scholar 

  42. Machida M., Ochiai K., Ito K., Ikeue K., Synthesis, crystal structure and catalytic activity for C3H6 combustion of La-Sr-Cu-O-S with K2NiF4-type perovskite structure, Journal of Catalysis, 2006, 238: 58–66.

    Article  Google Scholar 

  43. Baussart H., Delobel R., Bras M.L., Leroy J.M., Oxidation of propene on mixed oxides of copper and cobalt, Journal of the Chemical Society, Faraday Transactions 1, 1979, 75: 1337–1345.

    Article  Google Scholar 

  44. Bahlawane N., Fischer Rivera E., Kohse-Höinghaus K., Brechling A., Kleineberg U., Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition, Applied Catalysis B: Environmental, 2004, 53: 245–255.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the financial support from the Ministry of Science and Technology of China (2017YFA0402800) and Natural Science Foundation of China (No. 91541102/51476168). Achraf El Kasmi would thank the support of Chinese Academy of Sciences for senior international scientists (Grant No. 2017PE009). Muhammad Waqas is grateful for the financial support of CAS-TWAS scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Achraf El Kasmi or Zhenyu Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Kasmi, A., Waqas, M., Mountapmbeme Koutou, P. et al. Cu-Promoted Cobalt Oxide Film Catalyst for Efficient Gas Emissions Abatement. J. Therm. Sci. 28, 225–231 (2019). https://doi.org/10.1007/s11630-019-1093-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1093-9

Keywords

Navigation