Skip to main content

Advertisement

Log in

Atmospheric Test and Numerical Models Assessment of Annular Combustor on ZK2000 Gas Turbine

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

ZK2000 is a newly developed 2 MW all radial gas turbine with an annular combustor. In this paper, the authors present the atmospheric test results of the combustor on test rig. Evaluation of several RANS turbulence models and reaction models were used in order to determine which model was the most appropriate combination for comparison with the test results. FGM with SST were selected because of the better agreement with test results in terms of combustor temperature rise, primary zone temperature, liner metal temperature, and NOx emission predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang Z.F., et al. Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system. Applied Energy, 2017(205): 163–172.

    Article  Google Scholar 

  2. Lu W., et al. Comparison of the application in CCHP between gas turbine and gas engine, Journal of Engineering Thermophysics, 2008, 29(6): 905–910.

    Google Scholar 

  3. Chen Q., et al. The exergy and energy level analysis of a combined cooling, heating and power system driven by a small scale gas turbine at off design condition. Applied Thermal Engineering. 2014, 66(1–2): 590–602.

    Article  Google Scholar 

  4. Gouda M., Yamasaki Y., Hosokawa Y. High efficiency and low emission 1.7MW-class gas turbine, M1A-17 (New Product). Journal of the Gas Turbine Society of Japan. 2011(39): 195–196.

    Google Scholar 

  5. Yonezaw. Yoshio, Imamura R. and Kobayashi H. Development of 2MW class gas turbine IM270 for cogeneration plants. Conseil International Des Machines A Combustion. 1998: 517–523.

    Google Scholar 

  6. Weakley C K., et al. Development of surface-stabilized fuel injectors with sub-three PPM NOx emissions. International Joint Power Generation Conference, American Society of Mechanical Engineers, Scottsdale, Arizona, USA. 2002: 717–724.

    Google Scholar 

  7. Capston. Turbine Corporation. Mon. Advanced Micro Turbine System (AMTS)-C200 Micro Turbine-Ultra-Low Emissions Micro Turbine. United States. https://doi.org/www.osti.gov/servlets/purl/975026/. 2008 (accessed 26 April 2018).

    Google Scholar 

  8. Sine T.M., Reif P.J. An overview of lean-burn conversion for older Dresser-Rand engines. Annual fall technical conference of the ASME Internal Combustion Engine Division, Fairborn, United States. 1996: 20–23.

    Google Scholar 

  9. Klein S., Austrem I., Mowill J. The development of an ultra-low emissions liquid fuel combustor for the OPRA OP16 gas turbine. ASME Turbo Expo 2002, Amsterdam, Netherlands. 2002.

    Google Scholar 

  10. Yin J., Weng Y.W., Zhu J.Q. Numerical and experimental investigation on the performance of lean burn catalytic combustion for gas turbine application. Journal of Thermal Science. 2015, 24(2): 185–193.

    Article  ADS  Google Scholar 

  11. Menzies K.R. An evaluation of turbulence models for the isothermal flow in a gas turbine combustion system. Engineering Turbulence Modelling & Experiments. 2005, 72(5–6): 741–750.

    Article  Google Scholar 

  12. D Lörstad. Ljung., A Abou-Taouk. Investigation of Siemens SGT-800 industrial gas turbine combustor using different combustion and turbulence models. ASME Turbo Expo, Seoul, South Korea. 2016–57694.

    Google Scholar 

  13. Iqbal S., et al. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor. Journal of Thermal Science. 2016, 25(5): 460–469.

    Article  ADS  Google Scholar 

  14. Kim W., Menon S., and Mongia H. Large eddy simulation of a gas turbine combustor flows. Combustion Science and Technology. 1999, 143: 2562.

    Article  Google Scholar 

  15. Selle L., Lartigue G., Poinsot T., Koch R., Schildmacher K U., Krebs W., et al. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combustion & Flame. 2004, 137(4): 489–505.

    Article  Google Scholar 

  16. Cerutti M., Andreini A., Facchini B., Mangani L. Modeling of turbulent combustion and radiative heat transfer in an object-oriented CFD code for gas turbine application. ASME Turbo Expo, Berlin, Germany. 2008.

    Google Scholar 

  17. Goldin G, Montanari F, Patil S. A comparison of RANS and LES of an industrial lean premixed burner. ASME Turbo Expo, Düsseldorf, Germany, 2014.

    Google Scholar 

  18. Andreini A, Bianchini C, Caciolli G, Facchini B, Giusti A, Turrini F. Multi-coupled numerical analysis of advanced lean burn injection systems. ASME Turbo Expo, Düsseldorf, Germany. 2014.

    Google Scholar 

  19. Rudrapatna N.S., Bohman R.R., Anderson J.K., Dudebout R, Hausen R. The influence of manufacturing tolerances on swirler durability. ASME Turbo Expo, Düsseldorf, Germany. 2014.

    Google Scholar 

  20. Oijen J A V,. Goey L P H D. Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science & Technology. 2000, 161(1): 113–137.

    Google Scholar 

  21. Goey L P H D., Boonkkamp J H M T T. A mass-based definition of flame stretch for flames with finite thickness. Combustion Science & Technology, 1997, 122(1–6): 399–405.

    Article  Google Scholar 

  22. Goey L P H D., Boonkkamp J H M T T. A flamelet description of premixed laminar flames and the relation with flame stretch. Combustion & Flame, 1998, 119(3): 253–271.

    Article  Google Scholar 

  23. Donin Andrea, et al. The application of flamelet-generated manifold in the modeling of stratified premixed cooled flames. ASME Turbo Expo, Düsseldorf, Germany. 2014.

    Google Scholar 

  24. Fancello A., et al. Turbulent combustion modeling using flamelet-generated manifolds for gas turbine applications in open FOAM. ASME Turbo Expo, Düsseldorf, Germany. 2014.

    Google Scholar 

  25. Tan Z.Y., Yong M.U., Zheng H.T. Numerical simulation of three-dimensional combustion flows. Journal of Marine Science and Application. 2005, 4(3): 42–46.

    Article  Google Scholar 

  26. Mardan. Amir., Fazlollahighomshi A. Numerical investigation of a double-swirled gas turbine model combustor using a RANS approach with different turbulence-chemistry interaction models. Energy & Fuels. 2016, 30(8): 6764–6776.

    Article  Google Scholar 

  27. L. Xing., Jia Li. Investigation on combustion characteristics and NO formation of methane with swirling and nonswirling high temperature air. Journal of Thermal Science. 2014, 23(5): 472–479.

    MathSciNet  Google Scholar 

  28. M. Yong, et al. Numerical study of effect of compressor swirling flow on combustor design in a MTE. Journal of Thermal Science. 2017, 26(4): 349–354.

    Google Scholar 

  29. Liu X., Zheng H. Influence of deflection hole angle on effusion cooling in a real combustion chamber condition. Thermal Science. 2014, 19(00): 43–43.

    Google Scholar 

  30. Kedukodi S., Ekkad S., Moon H.K., Yong K., Srinivasan R. Numerical investigation of effect of geometry changes in a model combustor on swirl dominated flow and heat transfer. ASME Turbo Expo, Montreal, Canada. 2015.

    Google Scholar 

  31. Nguyen P., Vervisch L., Subramanian V., Domingo P. Multi-dimensional flamelet-generated manifold for partially premixed combustion. Combustion and Flame. 2010, 157: 43–61.

    Article  Google Scholar 

  32. Lodier G., Vervisch L., Moureau V., Domingo P. Combustion-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifold. Combustion and Flame. 2011, 158(10): 2009–2016.

    Article  Google Scholar 

  33. Zeldovich Y B., Barenblatt G I., Librovich V B., Makhviladze G M. The mathematical theory of combustion and explosions. Plenum Press, New York, 1985.

    Book  Google Scholar 

  34. Lefebvre A.H., Ballal D.R. Gas turbine combustion: alternative fuels and emissions. CRC Press, New York, 2010.

    Book  Google Scholar 

Download references

Acknowledgement

This work was funded by the Key Programs of the Chinese Academy of Sciences (Project No. ZDRW-CN- 2017-2) & National Natural Science Foundation of China No. 51306199

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Huang, W., Cao, Y. et al. Atmospheric Test and Numerical Models Assessment of Annular Combustor on ZK2000 Gas Turbine. J. Therm. Sci. 27, 516–526 (2018). https://doi.org/10.1007/s11630-018-1018-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-018-1018-z

Keywords

Navigation