Journal of Thermal Science

, Volume 27, Issue 3, pp 195–202 | Cite as

Optimization of Dimples in Microchannel Heat Sink with Impinging Jets — Part A: Mathematical Model and the Influence of Dimple Radius

  • Tingzhen Ming
  • Cunjin Cai
  • Wei Yang
  • Wenqing Shen
  • Ting Gan
Article
  • 22 Downloads

Abstract

With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modern advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was advanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MHSIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/ΔP of MHSIJD are higher than those of MHSIJ.

Keywords

Microchannel with Impinging Jet Dimple Heat Transfer Enhancement Thermal Resistance Numerical Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Szwaba R., Kaczynski P., Telega J., Doerffer P., Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer. Journal of Thermal Science. 2017, 26(6): 514–522.ADSCrossRefGoogle Scholar
  2. [2]
    An Z., Jia L., Ding Y., Dang C., Li X. J., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science. 2017, 26(5): 391–412.ADSCrossRefGoogle Scholar
  3. [3]
    Qin J., Ning D., Feng Y., Zhang J. L., Feng S., Bao W., A new method of thermal protection by opposing jet for a hypersonic aeroheating strut. Journal of Thermal Science. 2017, 26(3): 282–288.ADSCrossRefGoogle Scholar
  4. [4]
    Guo C., Nian X., Liu Y., Qi C., Song J., Yu W., Analysis of 2D flow and heat transfer modeling in fracture of porous media. Journal of Thermal Science. 2017, 26(4): 331–338.ADSCrossRefGoogle Scholar
  5. [5]
    Huang Z. F., Nakayama A., Yang K., Yang C., Liu W., Enhancing heat transfer in the core flow by using porous medium insert in a tube. International Journal of Heat and Mass Transfer. 2010, 53(5-6): 1164–1174.CrossRefMATHGoogle Scholar
  6. [6]
    Yu B. M., Liu W., Fractal analysis of permeabilities for porous media. Aiche Journal. 2004, 50(1): 46–57.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Guo J., Fan A. W., Zhang X. Y., Liu W., A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. International Journal of Thermal Sciences. 2011, 50(7): 1263–1270.CrossRefGoogle Scholar
  8. [8]
    Zhang X. Y., Liu Z. C., Liu W., Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes. International Journal of Thermal Sciences. 2012, 58: 157–167.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Zhang X. Y., Liu Z. C., Liu W., Numerical studies on heat transfer and friction factor characteristics of a tube fitted with helical screw-tape without core-rod inserts. International Journal of Heat and Mass Transfer. 2013, 60: 490–498.CrossRefGoogle Scholar
  10. [10]
    Tuckerman D. B., Pease R. F. W., High-performance heat sinking for VLSI. IEEE Electron Device Letters. 1981, 2(5): 126–129.ADSCrossRefGoogle Scholar
  11. [11]
    Lee Y. J., Lee P. S., Chou S. K., Enhanced microchannel heat sinks using oblique fins. ASME 2009 Inter PACK Conference, Volume 2 San Francisco, California, USA, July 19–23, 2009 Conference Sponsors: Electronic and Photonic Packaging Division. 253‒260.CrossRefGoogle Scholar
  12. [12]
    Suresh S., Chandrasekar M., Selvakumar P., Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat and Mass Transfer. 2012, 48(4): 683–694.ADSCrossRefGoogle Scholar
  13. [13]
    Suresh S., Chandrasekar M., Sekhar S. C., Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Heat & Mass Transfer. 2011, 35(3): 542–549.Google Scholar
  14. [14]
    Robinson A. J., Schnitzler E., An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer. Experimental Thermal & Fluid Science. 2007, 32(1): 1–13.CrossRefGoogle Scholar
  15. [15]
    San J. Y., Chen J. J., Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. International Journal of Heat & Mass Transfer. 2014, 71(1): 8–17.CrossRefGoogle Scholar
  16. [16]
    Brignoni L. A., Garimella S. V., Experimental optimization of confined air jet impingement on a pin fin heat sink. IEEE Transactions on Components & Packaging Technologies. 1999, 22(3): 399–404.CrossRefGoogle Scholar
  17. [17]
    Seyf H. R., Zhou Z., Ma H. B., Zhang Y., Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. International Journal of Heat & Mass Transfer. 2013, 56(1–2): 561–573.CrossRefGoogle Scholar
  18. [18]
    Zhuang Y., Ma C. F., Qin M., Experimental study on local heat transfer with liquid impingement flow in two-dimensional micro-channels. International Journal of Heat & Mass Transfer. 1997, 40(97): 4055–4059.CrossRefGoogle Scholar
  19. [19]
    Ming T. Z., Gui J. L., Peng C., Tao Y., Analysis of the hydraulic and thermal performances of a microchannel heat sink with extended-nozzle impinging jets. Heat Transfer Research. 2017, 48(10): 893–914.CrossRefGoogle Scholar
  20. [20]
    Ming T. Z., Ding Y., Gui J. L., Tao Y. X., Transient thermal behavior of a microchannel heat sink with multiple impinging jets. Journal of Zhejiang University-Science A. 2015, 16(11): 894–909.CrossRefGoogle Scholar
  21. [21]
    Kanokjaruvijit K., Martinezbotas R. F., Parametric Effects on Heat Transfer of Impingement on Dimpled Surface. Journal of Turbomachinery. 2005, 127: 287–296.CrossRefGoogle Scholar
  22. [22]
    Terekhov V. I., Kalinina S. V., Mshvidobadze Y. M., Sharov K. A., Impingement of an impact jet onto a spherical cavity. Flow structure and heat transfer. International Journal of Heat & Mass Transfer. 2009, 52(11): 2498–2506.CrossRefGoogle Scholar
  23. [23]
    Huang X., Yang W., Ming T. Z., Shen W. Q., Yu X. F., Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer. 2017, 112: 113–124.CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tingzhen Ming
    • 1
    • 2
  • Cunjin Cai
    • 1
  • Wei Yang
    • 3
  • Wenqing Shen
    • 4
  • Ting Gan
    • 1
  1. 1.School of Civil Engineering and ArchitectureWuhan University of TechnologyWuhanChina
  2. 2.China Energy Group, Environmental Energy Technologies DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Hubei Institute of Aerospace Chemical TechnologyXiangyangChina
  4. 4.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations