Skip to main content
Log in

Interaction of two cavitation bubbles in a tube and its effects on heat transfer

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

When two cavitation bubbles exist in a confined space, the interaction between the bubbles significantly affects the characteristics of bubble dynamic behaviors. In this paper, a three-dimensional (3D) model is established to study the growth and collapse of two cavitation bubbles in a heated tube and its effects on heat transfer. The liquid and gas phases throughout the calculation domain are solved by a set of Navier-Stokes equations. It is assumed that the gas inside the bubble is compressible vapor, and the surrounding liquid is incompressible water. The mass transfer between two phases is ignored. The calculated bubble profiles were compared to the available experimental data, and a good agreement has been achieved. Then, the relationship among the bubble motion, flow field and pressure distributions was analyzed. On this basis, the effects of bubble interaction on the heat transfer between the wall surface and sounding liquid were discussed. It is found that heat transfer in the centre wall region is enhanced owing to the vortex flow and micro-jet induced by the bubble contraction and collapse. In contrast, the highest surface temperature appears in the surrounding region, which is mainly attributed to the thermal resistance induced by the bubble. The present study is helpful to understand the heat transfer phenomenon with cavitation in the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

total energy (J)

F :

force (N)

h :

heat transfer coefficient (W/m2·K)

H :

distance from the centre point to the bubble

k :

effective conductivity (W/m·K)

L :

length of the tube (mm)

M :

molecular weight (kg/mol)

p :

static pressure (Pa)

q :

heat flux (W/cm2)

R :

bubble radius (mm)

R g :

gas constant (J/K·mol)

t :

time (s)

T :

temperature (K)

v :

velocity (m/s)

x :

x coordinate (m)

y :

y coordinate (m)

z :

z coordinate (m)

ρ :

Density (kg/m3)

β :

volume fraction (-)

µ :

viscosity (kg/m·s)

k :

curvature of the interface (1/m)

s :

surface tension (N/m)

f:

fluid

g:

gas phase

l:

liquid phase

w:

wall surface

max:

maximum value

t:

total

0:

initial

∞:

far field

References

  1. Escaler X., Egusquiza E., Farhat M., Avellan F., Coussirat M.: Detection of cavitation in hydraulic turbines, Mechanical Systems and Signal Processing, vol. 20, pp. 983–1007, (2006).

    Article  ADS  Google Scholar 

  2. Dorji U., Ghomashchi R.: Hydro turbine failure mechanisms: An overview, Engineering Failure Analysis, vol. 44, pp. 136–147, (2014).

    Article  Google Scholar 

  3. Ryl J., Wysocka J., Slepski P., Darowicki K.: Instantaneous impedance monitoring of synergistic effect between cavitation erosion and corrosion processes, Electrochimica Acta, vol. 203, pp. 388–395, (2016).

    Article  Google Scholar 

  4. Kim K. H., Chahine G., Franc J. P., Karimi A.: Advanced experimental and numerical techniques for cavitation erosion prediction, Springer Netherlands, Dordrecht, (2014).

    Book  MATH  Google Scholar 

  5. Singh R., Tiwari S. K., Mishra S. K.: Cavitation erosion in hydraulic turbine components and mitigation by coatings: current status and future needs, Journal of Materials Engineering and Performance, vol. 21, pp. 1539–1551, (2012).

    Article  ADS  Google Scholar 

  6. Niemczewski B.: Cavitation intensity of water under practical ultrasonic cleaning conditions, Ultrasonics Sonochemistry, vol. 21, pp. 354–359, (2014).

    Article  Google Scholar 

  7. Verhaagen B., Fernández R. D.: Measuring cavitation and its cleaning effect, Ultrasonics Sonochemistry, vol. 29, pp. 619–628, (2016).

    Article  Google Scholar 

  8. Angaji M. T., Ghiaee R.: Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process, Ultrasonics Sonochemistry, vol. 23, pp. 257–265, (2015).

    Article  Google Scholar 

  9. Dular M., Griesslerbulc T., Griesslerbulc I., Heath E., Kosjek T., Klemencic A. K., Oder M., Petkovsek M., Racki N., Ravnikar, M. Sarc A. Sirok B., Zupanc M., Zitnik M., Kompare B., Use of hydrodynamic cavitation in (waste) water treatment, Ultrasonics Sonochemistry, vol. 29, pp. 577–588 (2016).

    Article  Google Scholar 

  10. Frank S., Lautz J., Sankin G. N., Szeri A. J., Zhong P.: Bubble proliferation or dissolution of cavitation nuclei in the beam path of a shock-wave lithotripter, Physical Review Applied, vol. 3, pp. 034002, (2015).

    Article  ADS  Google Scholar 

  11. Schneider B., Kosar A., Kuo C. J., Mishra C., Cole G. S., Scaringe R. P., Peles Y.: Cavitation enhanced heat transfer in microchannels, Journal of Heat Transfer, vol. 128, pp. 1293–1301, (2006).

    Article  Google Scholar 

  12. Brujan E. A., Nahen K., Schmidt P., Vogel A.: Dynamics of laser-induced cavitation bubbles near an elastic boundary, Journal of Fluid Mechanics, vol. 433, pp. 251–281, (2001).

    Article  ADS  MATH  Google Scholar 

  13. Brujan E. A., Ikeda T., Matsumoto Y.: On the pressure of cavitation bubbles, Experimental Thermal and Fluid Science, vol. 32, pp. 1188–1191, (2008).

    Article  Google Scholar 

  14. Yang Y. X., Wang Q. X., Keat T. S.: Dynamic features of a laser-induced cavitation bubble near a solid boundary, Ultrasonics Sonochemistry, vol. 20, pp. 1098–1103, (2013).

    Article  Google Scholar 

  15. Ohl C., Avila S. R., Klaseboer E. Liu A. Q., Tandiono T., Ando K.: Cavitation in confined spaces, The Journal of the Acoustical Society of America, vol. 131, pp. 3338–3338, (2012).

    Article  ADS  Google Scholar 

  16. Hilgenfeldt S., Brenner M. P., Grossmann S., Lohse D.: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles, Journal of Fluid Mechanics, vol. 365, pp. 171–204, (1998).

    Article  ADS  MATH  Google Scholar 

  17. Wafaa S., Tetsutaro N., Noriharu T., Koichi S.: Modification of Rayleigh–Plesset Theory for Reproducing Dynamics of Cavitation Bubbles in Liquid-Phase Laser Ablation, Japanese Journal of Applied Physics, vol. 49, pp. 116202, (2010).

    Article  Google Scholar 

  18. Huang J., Zhang H.: Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall, Acta Mechanica Sinica, vol.23, pp. 645–653, (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bal S., Kinnas A. S., A BEM for the prediction of free surface effects on cavitating hydrofoil., Computational Mechanics, vol. 28, pp. 260–274, (2002).

    Article  ADS  MATH  Google Scholar 

  20. Tryggvason G., Bunner B., Juric D., Rawahi N., Han J., Nas S., Jan Y. J.: A Front-Tracking Method for the Computations of Multiphase Flow, Journal of Computational Physics, vol. 169, pp. 708–759, (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sussman M., A second order coupled level set and volume- of-fluid method for computing growth and collapse of vapor bubble., Journal of Computational Physics, vol. 187, pp. 110–136, (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Cai J., Huai X. L., Yan R., Cheng Y., Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure, Applied Thermal Engineering, vol. 29 pp. 1973–1982, (2009).

    Article  Google Scholar 

  23. Liu B., Cai J., Huai X. L., Li X. F.: Cavitation bubble collapse near a heated wall and its effect on the heat transfer, Journal of Heat Transfer, vol. 136, pp. 022901–022901, (2013).

    Article  Google Scholar 

  24. Liu B., Cai J., Huai X. L.: Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls, International Journal of Heat and Mass Transfer, vol. 78, pp. 830–838, (2014).

    Article  Google Scholar 

  25. Ji C.: Numerical and experimental research of bubble behavior in restricted space, Doctoral dissertation, Zhejiang University, Hangzhou, China, (2013).

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51606190, Grant No. 51376181).

Author information

Authors and Affiliations

Authors

Additional information

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51606190, Grant No. 51376181)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Cai, J., Tao, Y. et al. Interaction of two cavitation bubbles in a tube and its effects on heat transfer. J. Therm. Sci. 26, 66–72 (2017). https://doi.org/10.1007/s11630-017-0911-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-017-0911-1

Keywords

Navigation