Skip to main content

Advertisement

Log in

Numerical analysis of a wells turbine at different non-dimensional piston frequencies

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Wave energy is one of the renewable energy sources with the highest potential. Several pilot plants have been built based on the principle of the Oscillating Water Column (OWC). Among the different solutions that have been suggested, the Wells turbine has gained particular attention due to its simplicity and reliability.

The majority of available studies concentrate on the steady operation of the Wells turbine, while only few analyze its performance under an unsteady and bi-directional air flow, as determined by the presence of the OWC system.

In this work, experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared, at different non-dimensional piston frequencies. The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions, with particular attention to the behavior of the flow upstream and downstream of the rotor, flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Curran and L. M. C. Gato. The energy conversion performance of several types of Wells turbine designs. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 211(2): 133–145, 1997.

    Google Scholar 

  2. A. F.d O. Falcao. Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14(3): 899–918, 2010.

    Article  Google Scholar 

  3. T. S. Dhanasekaran and M. Govardhan. Computational analysis of performance and flow investigation on Wells turbine for wave energy conversion. Renewable Energy, 30(14): 2129–2147, Nov. 2005.

    Article  Google Scholar 

  4. L. M. C. Gato and A. F. de O. Falcao. Aerodynamics of the Wells turbine. International Journal of Mechanical Sciences, 30(6): 383–395, 1988.

    Article  Google Scholar 

  5. L. M. C. Gato and M. Webster. An experimental investigation into the effect of rotor blade sweep on the performance of the variable-pitch Wells turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(5): 611–622, Jan. 2001.

    Google Scholar 

  6. M. Govardhan and T. S. Dhanasekaran. Effect of Guide Vanes on the Performance of a Variable Chord Self-Rectifying Air Turbine. Journal of Thermal Science, 7(4), 1998.

    Google Scholar 

  7. T. Kim, T. Setoguchi, K. Kaneko, and S. Raghunathan. Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renewable Energy, 25(2): 235–248, Feb. 2002.

    Article  Google Scholar 

  8. T. Kim, T. Setoguchi, Y. Kinoue, and K. Kaneko. Effects of blade geometry on performance of Wells turbine for wave power conversion. Journal of Thermal Science, 10(4): 293–300, Oct. 2001.

    Article  ADS  Google Scholar 

  9. T. H. Kim, T. Setoguchi, M. Takao, K. Kaneko, and S. Santhakumar. Study of turbine with self-pitch-controlled blades for wave energy conversion. International Journal of Thermal Sciences, 41(1): 101–107, 2002.

    Article  Google Scholar 

  10. Y. Kinoue, T. Setoguchi, T. H. Kim, K. Kaneko, and M. Inoue. Mechanism of Hysteretic Characteristics of Wells Turbine for Wave Power Conversion. Journal of Fluids Engineering, 125(2): 302, 2003.

    Article  Google Scholar 

  11. A. Mohamed. Design Optimization of Savonius and Wells Turbines. PhD thesis, Magdeburg University, 2011.

    Google Scholar 

  12. M. H. Mohamed and S. Shaaban. Numerical optimization of axial turbine with self-pitch-controlled blades used for wave energy conversion. International Journal of Energy Research, 38: 592–601, 2014.

    Article  Google Scholar 

  13. M. Paderi and P. Puddu. Experimental investigation in a Wells turbine under bi-directional flow. Renewable Energy, 57: 570–576, Sept. 2013.

    Article  Google Scholar 

  14. P. Puddu, M. Paderi, and C. Manca. Aerodynamic Characterization of a Wells Turbine under Bidirectional Airflow. Energy Procedia, 45: 278–287, 2014.

    Article  Google Scholar 

  15. S. Raghunathan. The Wells air turbine for wave energy conversion. Progress in Aerospace Sciences, 31(4): 335–386, 1995.

    Article  ADS  Google Scholar 

  16. T. Setoguchi, S. Santhakumar, H. Maeda, M. Takao, and K. Kaneko. A review of impulse turbines for wave energy conversion. Renewable Energy, 23(2): 261–292, 2001.

    Article  Google Scholar 

  17. T. Setoguchi, S. Santhakumar, M. Takao, T. H. Kim, and K. Kaneko. A modified Wells turbine for wave energy conversion. Renewable Energy, 28(1): 79–91, 2003.

    Article  Google Scholar 

  18. T. Setoguchi and M. Takao. Current status of self rectifying air turbines for wave energy conversion. Energy Conversion and Management, 47(15–16): 2382–2396, 2006.

    Article  Google Scholar 

  19. T. Setoguchi, M. Takao, and K. Kaneko. Hysteresis on wells turbine characteristics in reciprocating flow. International Journal of Rotating Machinery, 4(1): 17–24, 1998.

    Article  Google Scholar 

  20. S. Shaaban and A. Abdel Hafiz. Effect of duct geometry on Wells turbine performance. Energy Conversion and Management, 61: 51–58, Sept. 2012.

    Article  Google Scholar 

  21. R. H. Taylor. Alternative Energy Sources for the Centralised Generation of Electricity. Adam Hilger Ltd, Bristol, 1983.

    Google Scholar 

  22. A. Thakker and R. Abdulhadi. Effect of Blade Profile on the Performance of Wells Turbine under Unidirectional Sinusoidal and Real Sea Flow Conditions. International Journal of Rotating Machinery, 2007: 1–9, 2007.

    Article  Google Scholar 

  23. T. Thorpe. Wave Energy for the 21st century. Status and Prospects. Renewable Energy World, pages 115–121, 2000.

    Google Scholar 

  24. M. Torresi, S. Camporeale, P. Strippoli, and G. Pascazio. Accurate numerical simulation of a high solidity Wells turbine. Renewable Energy, 33(4):735–747, Apr. 2008.

    Article  Google Scholar 

  25. M. Torresi, S. M. Camporeale, and G. Pascazio. Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions. Journal of Fluids Engineering, 131(7): 071103, 2009.

    Article  Google Scholar 

  26. A. Wells. Fluid Driven Rotary Transducer - BR. Pat. 1595700, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghisu, T., Puddu, P. & Cambuli, F. Numerical analysis of a wells turbine at different non-dimensional piston frequencies. J. Therm. Sci. 24, 535–543 (2015). https://doi.org/10.1007/s11630-015-0819-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-015-0819-6

Keywords

Navigation