Skip to main content
Log in

A comparative study of the local heat transfer distributions around various surface mounted obstacles

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In many engineering applications, heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications. This study examines experimentally the heat transfer characteristics on the base plate around various surface mounted obstacles. Local convection coefficients are evaluated in the vicinity of each individual protruding body with great spatial resolution using the transient liquid crystal technique. Five different obstacles of constant height-to-hydraulic diameter ratio (∼1.3) are considered. These include: a cylinder, a square, a triangle, a diamond and a vortex generator of delta wing shape design. The experiments were carried out over a range of freestream Reynolds numbers, based on the hydraulic diameter of each obstacle, varying from 4,000 to 13,000. The results indicate a negligible effect of the flow speed on the heat transfer topological structure and a considerable effect of the obstacle geometry on the level and distribution of heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c J/(kg K):

specific heat

d m:

hydraulic diameter

h W/(m2 K):

heat transfer coefficient

H m:

obstacle height

k W/(m K):

thermal conductivity

Re —:

Reynolds number

t s:

time

T K:

temperature

U m/s:

velocity

VG :

vortex generator

x,y,z :

coordinate system

a m:

obstacle side

ρ kg/m3 :

density

µ kg/(m s):

dynamic viscosity

i :

initial conditions

∞:

freestream conditions

g :

hot gas conditions

LC:

liquid crystals

ref:

flat plate (no obstacle)

References

  1. Ligrani, P., M.M. Oliveira, and T. Blaskovich, Comparison of heat transfer augmentation techniques. AIAA Journal, 2003. 41(3): p. 337–362.

    Article  ADS  Google Scholar 

  2. Han, J.-C., S. Dutta, and S.V. Ekkad, Heat transfer and pressure drop in blade cooling channels with turbulence promoters. NACA CR-3837, 1984.

    Google Scholar 

  3. Chyu, M.K., V. Natarajan, and Y.C. Hsing, Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel. Journal of Turbomachinery, 1998. 120(2): p. 362–367.

    Article  Google Scholar 

  4. Metzger, D.E., C.S. Fan, and S.W. Haley, Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays. Journal of Engineering for Gas Turbines and Power, 1984. 106(1): p. 252–257.

    Article  ADS  Google Scholar 

  5. Chang, S.W., T.L. Yang, C.C. Huang, K.F. Chiang., Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array. International Journal of Heat and Mass Transfer, 2008. 51(21–22): p. 5247–5259.

    Article  MATH  Google Scholar 

  6. Ligrani, P., Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines. International Journal of Rotating Machinery, Article ID 275653, 2013. 2013: p. 32 pages.

    Google Scholar 

  7. Sparrow, E.M., T.J. Stahl, and P. Traub, Heat transfer adjacent to the attached end of a cylinder in crossflow. International Journal of Heat and Mass Transfer, 1984. 27(2): p. 233–242.

    Article  ADS  Google Scholar 

  8. Goldstein, R.J., S.Y. Yoo, and M.K. Chung, Convective mass transfer from a square cylinder and its base plate. International Journal of Heat and Mass Transfer, 1990. 33(1): p. 9–18.

    Article  ADS  Google Scholar 

  9. Chyu, M.K. and V. Natarajan, Heat transfer on the base of threedimensional protruding elements. International Journal of Heat and Mass Transfer, 1996. 39(14): p. 2925–2935.

    Article  MATH  Google Scholar 

  10. Giordano, R., A. Ianiro, T. Astarita, G.M. Carlomagno, Flow field and heat transfer on the base surface of a finite circular cylinder in crossflow. Applied Thermal Engineering, 2012. 49(0): p. 79–88.

    Article  Google Scholar 

  11. Igarashi, T., Local heat transfer from a square prism to an airstream. International Journal of Heat and Mass Transfer, 1986. 29(5): p. 777–784.

    Article  Google Scholar 

  12. Meinders, E.R., T.H. Van Der Meer, and K. Hanjalic, Local convective heat transfer from an array of wall-mounted cubes. International Journal of Heat and Mass Transfer, 1998. 41(2): p. 335–346.

    Article  Google Scholar 

  13. Zeitoun, O., M. Ali, and A. Nuhait, Convective heat transfer around a triangular cylinder in an air cross flow. International Journal of Thermal Sciences, 2011. 50(9): p. 1685–1697.

    Article  Google Scholar 

  14. Tanda, G., Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements. International Journal of Heat and Mass Transfer, 2001. 44(18): p. 3529–3541.

    Article  Google Scholar 

  15. Henze, M., J. von Wolfersdorf, B. Weigand, C.F. Dietz, S.O. Neumann, Flow and heat transfer characteristics behind vortex generators — A benchmark dataset. International Journal of Heat and Fluid Flow, 2011. 32(1): p. 318–328.

    Article  Google Scholar 

  16. Terzis, A., J. von Wolfersdorf, B. Weigand, P. Ott, Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique. Meas. Sci. Technol., 2012. 23(11): p. 115303

    Article  Google Scholar 

  17. Poser, R. and J. von Wolfersdorf, Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems. Heat Transfer Research, 2011. 42(2): p. 181–197.

    Article  Google Scholar 

  18. Kingsley-Rowe, J.R., G.D. Lock, and J.M. Owen, Transient Heat Transfer Measurements Using Thermochromic Liquid Crystals: Lateral-Conduction Error. International Journal of Heat and Fluid Flow, 2005. 26(2): p. 256–263.

    Article  Google Scholar 

  19. Hoefler, F., S. Schueren, J. von Wolfersdorf, S. Naik, Heat Transfer Characteristics of an Oblique Jet Impingement Configuration in a Passage With Ribbed Surfaces. Journal of Turbomachinery, ASME, 2012. 134: p. 031022–9.

    Article  Google Scholar 

  20. Praisner, T.J. and C.R. Smith, The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer-Part II: Time-Mean Results. Journal of Turbomachinery, 2005. 128(4): p. 755–762.

    Article  Google Scholar 

  21. Yan, W.M., C.Y. Soong, and R.C. Hsieh, Experimental Study of Surface-Mounted Obstacle Effects on Heat Transfer Enhancement by Using Transient Liquid Crystal Thermograph. Journal of Heat Transfer, 2002. 124(4): p. 762–769.

    Article  Google Scholar 

  22. Henze, M. and J. von Wolfersdorf, Influence of approach flow conditions on heat transfer behind vortex generators. International Journal of Heat and Mass Transfer, 2011. 54(1–3): p. 279–287.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyssmann, R., Ullmer, D., Terzis, A. et al. A comparative study of the local heat transfer distributions around various surface mounted obstacles. J. Therm. Sci. 23, 169–176 (2014). https://doi.org/10.1007/s11630-014-0692-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-014-0692-8

Keywords

Navigation