Skip to main content
Log in

Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The paper is concerned with the fluid flow in the impeller side clearances of a centrifugal pump with volute casing. The flow conditions in these small axial gaps are of significant importance for a number of effects such as disk friction, leakage losses or hydraulic axial thrust to name but a few. In the investigated single stage pump, the flow pattern in the volute turns out to be asymmetric even at design flow rate. To gain a detailed insight into the flow structure, numerical simulations of the complete pump including the impeller side clearances are accomplished. Additionally, the hydraulic head and the radial pressure distributions in the impeller side clearances are measured and compared with the numerical results. Two configurations of the impeller, either with or without balancing holes, are examined. Moreover, three different operating points, i.e.: design point, part load or overload conditions are considered. In addition, analytical calculations are accomplished to determine the pressure distributions in the impeller side clearances. If accurate boundary conditions are available, the 1D flow models used in this paper can provide reasonable results for the radial static pressure distribution in the impeller side clearances. Furthermore, a counter rotating wake region develops in the rear impeller side clearances in absence of balancing holes which severely affects the inflow and outflow conditions of the cavity in circumferential direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β= ω/Ω:

Core rotation coefficient

G=s/b :

Dimensionless gap size

\(\operatorname{Re} _\phi = \frac{{\Omega \cdot b^2 }} {v} \) :

Circumferential Reynolds number

a:

Hub radius

b:

Outer impeller radius

l1, l2 :

Radial gap heights

s:

Axial gap width

Ω:

Angular speed of the rotor

\(\bar r = r/b\) :

Dimensionless radius

\(\phi _G = \frac{Q} {{\pi \cdot \Omega \cdot b^3 }} \) :

Dimensionless through-flow rate

Q:

Volume flow rate

λR, λS :

Friction factors (rotor, stator)

ω:

Angular velocity of the fluid

δR, δS :

Boundary layer thickness (rotor and stator)

ReR, ReS :

Reynolds number for the rotor and stator boundary layer

ν:

Kinematic viscosity

Cfmean :

Friction coefficient

ρ:

Fluid density

τ 0,τ φ0 ,τ r0 :

Total, tangential and radial wall shear stress

vmean :

Mean velocity

α:

Angle between shear stress at the wall and the tangential direction

A, B:

Constants

\(\operatorname{Re} _l = \frac{{\Omega \cdot r^2 }} {v} \) :

Local Reynolds number

v rR ,v rs :

Radial velocity (rotor, stator b.l.)

z R , z S :

Axial coordinates (positive from the rotor and stator wall)

a, a*:

Velocity factors

n, m:

Exponents for velocity profiles

C1 :

Constant

f:

Correction function

nq :

Specific speed of the pump

φ:

Perimeter coordinate

H:

Delivery head

p tot :

Total pressure

p:

Pressure

\(p^* = \frac{{2 \cdot p}} {{\rho \Omega ^2 b^2 }} \) :

Dimensionless pressure

βe :

Boundary values for the core rotation

pe :

Boundary value for the pressure

References

  1. Will, B.C., Benra, F.K., Dohmen, H.J., 2010, Numerical and Experimental Investigation of the Flow in the Side Cavities of a Centrifugal Pump, The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC13-2010-0002, Honolulu, Hawaii, USA.

  2. Daily, J.W., Nece, R.E., 1960, Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks, Journal of Basic Engineering, 82, p. 217–232.

    Article  Google Scholar 

  3. Daily, J.W., Ernst, W.D., Asbedian, V.V., 1964, Enclosed Rotating Disks with Superposed Throughflow, Massachusetts Institute of Technology, Report No. 64, Boston.

  4. Hamkins, C.P., 1999, The Surface Flow Angle in Rotating Flow: Application to the Centrifugal Pump Impeller Side Gap, Dissertation, TU Kaiserslautern, Kaiserslautern.

  5. Gülich, J.F., 2010, Handbuch Kreiselpumpen, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  6. Senoo, Y., Hayami, H., 1976, An Analysis on the Flow in a Casing Induced by a Rotating Disk Using a Four-Layer Flow Model, Transactions of the ASME, Journal of Fluids Engineering, p. 192–198.

  7. Bennet, T.P., Worster, R.C., 1961, The Friction on Rotating Disc and Effect on Net Radial Flow and Externally Applied Whirl, British Hydromechanics Research Association, Cranfield, Bedford, Report RR691.

  8. Will, B.C., Benra, F.K., 2009, Investigation of the Fluid Flow in a Rotor-Stator Cavity with Inward Through-Flow, Proceedings of FEDSM2009, ASME Fluids Engineering Conference, FEDSM2009-78503, Vail, Colorado, USA.

  9. Truckenbrodt, E., 1989, Fluidmechanik, Springer-Verlag, Heidelberg, Germany.

    MATH  Google Scholar 

  10. Poncet, S., Chauve, M.P., Le Gal, P., 2005, Turbulent Rotating Disk Flow with Inward Through-Flow, Journal of Fluid Mechanics, Vol. 522, p. 253–262.

    Article  ADS  MATH  Google Scholar 

  11. Kurokawa, J., Toyokura, T., 1972, Study on Axial Thrust of Radial Flow Turbomachinery, The second International JSME Symposium Fluid Machinery and Fluidics, Tokyo, p. 31–40.

  12. Kurokawa, J., Sakuma, M., 1988, Flow in a Narrow Gap along an Enclosed Rotating Disk with Through-Flow, JSME International Journal, Series II, Vol. 31, No.2, p. 243–251.

    Google Scholar 

  13. Schultz-Grunow, F., 1935, Der Reibungswiderstand rotierender Scheiben in Gehäusen, Zeitschrift für angewandte Mathematik und Mechanik, 15, p. 191–204.

    Article  MATH  Google Scholar 

  14. Poncet, S., Schiestel, R., Chauve, M.P., 2005, Turbulence Modelling and Measurements in a Rotor-Stator System with Throughflow, Engineering Turbulence Modelling and Measurements, ETMM6, Sardinia, Italy, Ed. W. Rodi & M. Mulas, Elsevier, p. 761–770.

  15. Lauer, J., 1999, Einfluss der Eintrittsbedingung und der Geometrie auf die Strömung in den Radseitenräumen von Kreiselpumpen, Dissertation, TU Darmstadt, Darmstadt.

    Google Scholar 

  16. Radtke, F., Ziemann, M., 1983, Experimentelle und theoretische Untersuchungen des Reibungseinflusses an rotierenden Scheiben, Forschungsvereinigung Verbrennungskraftmaschinen e.V., (FVV) — Forschungsberichte No. 331, Frankfurt.

  17. Möhring, U.K., 1976, Untersuchung des radialen Druckverlaufes und des übertragenen Drehmomentes im Radseitenraum von Kreiselpumpen bei glatter, ebener Radseitenwand und bei Anwendung von Rückenschaufeln, Dissertation, TU Braunschweig, Braunschweig.

    Google Scholar 

  18. Poncet, S., Da Soghe, R., Facchini, B., 2010, RANS modeling of flows in rotating disk systems, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, BC., Benra, FK. & Dohmen, HJ. Investigation of the flow in the impeller side clearances of a centrifugal pump with volute casing. J. Therm. Sci. 21, 197–208 (2012). https://doi.org/10.1007/s11630-012-0536-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-012-0536-3

Keywords

Navigation