Skip to main content

Advertisement

SpringerLink
Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy)
Download PDF
Download PDF
  • Original Article
  • Open Access
  • Published: 20 August 2022

Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy)

  • Barbara Valle  ORCID: orcid.org/0000-0003-4829-47761,
  • Mauro Gobbi  ORCID: orcid.org/0000-0002-1704-48572,
  • Marta Tognetti  ORCID: orcid.org/0000-0001-8509-49981,
  • Marina Serena Borgatti  ORCID: orcid.org/0000-0003-3842-86461,
  • Chiara Compostella  ORCID: orcid.org/0000-0002-2905-81213,
  • Paolo Pantini  ORCID: orcid.org/0000-0001-8332-19154 &
  • …
  • Marco Caccianiga  ORCID: orcid.org/0000-0001-9715-18301 

Journal of Mountain Science volume 19, pages 2139–2159 (2022)Cite this article

  • 213 Accesses

  • Metrics details

This article has been updated

Abstract

We applied a multi-taxa approach integrating the co-occurrence of plants, ground beetles, spiders and springtails with soil parameters (temperatures and chemical characteristics) in order to describe the primary succession along two glacier forelands in the Maritime Alps (Italy), a hotspot of Mediterranean biodiversity. We compared these successions to those from Central Alps: Maritime glacier forelands markedly differ for their higher values of species richness and species turnover. Contrary to our expectation, Maritime glacier forelands follow a ‘replacement change model’, like continental succession of Inner Alps and differently from other peripheral successions. We propose that the temperatures along these Mediterranean glacier forelands are warmer than those along other Alpine glacier forelands, which promote the faster species turnover. Furthermore, we found that early and mid successional stages of the investigated glaciers are richer in cold-adapted and endemic species than the later ones: we confirmed that the ‘replacement change’ model disadvantages pioneer, cold-adapted species. Given the overall correspondence among cold-adapted and endemic species, the most threatened in this climate phase, our results raise new concerns about the extinction risk of these species. We also describe supraglacial habitat of Maritime glaciers demonstrating that supraglacial debris represents an environment decoupled from the regional climate and may have an important role as refugium for coldadapted and hygrophilous plant and animal species, whose survival can be threatened by climate change and by a rapid ecological succession in the adjacent forelands.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Change history

  • 22 October 2022

    Funding note is missing during initial upload.

References

  • Bartolucci F, Peruzzi L, Galasso G, et al. (2018) An updated checklist of the vascular flora native to Italy. Plant Biosyst - Int J Deal Asp Plant Biol 152: 179–303. https://doi.org/10.1080/11263504.2017.1419996

    Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, et al. (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95: 69–114. https://doi.org/10.1079/BER2004350

    Article  Google Scholar 

  • Bisio L (2008) Second contribute to the knowledge of Piedmont and Aosta Valley Oreonebria: O. castanea and the species of the group “picea” (Coleoptera Carabidae (Secondo contributo alla conoscenza di Oreonebria del Piemonte e della Valle d’Aosta: Oreonebria castanea e le specie del gruppo “picea” (Coleoptera Carabidae).) Riv Piem Sc Nat 29: 177–209. (in Italian)

    Google Scholar 

  • Bisio L, Taglianti AV (2021) Carabid beetles from Valle Stura di Demonte (Maritime and Cottian Alps (I Carabidi della Valle Stura di Demonte (Alpi Marittime e Cozie)). Boll Della Soc Entomol Ital 153: 51–86. (in Italian)

    Article  Google Scholar 

  • Bretfeld G (1999) Symphypleona, Synopses on Palaearctic Collembola. Senckenberg Museum of Natural History Görlitz.

    Google Scholar 

  • Burga CA (1999) Vegetation development on the glacier foreland Morteratsch (Switzerland). Appl Veg Sci 2: 17–24.

    Article  Google Scholar 

  • Caccianiga M, Andreis C, Cerabolini B (2001). Vegetation and environmental factors during primary succession on glacier forelands: some outlines from the Italian Alps. Plant Biosyst 135: 295–310. https://doi.org/10.1080/11263500112331350930

    Article  Google Scholar 

  • Caccianiga M, Andreis C, Diolaiuti G, et al. (2011) Alpine debris-covered glaciers as a habitat for plant life. The Holocene 21: 1011–1020. https://doi.org/10.1177/0959683611400219

    Article  Google Scholar 

  • Castle SC, Lekberg Y, Affleck D, et al. (2016) Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. J Ecol 104: 1555–1565. https://doi.org/10.1111/1365-2745.12615

    Article  Google Scholar 

  • Cauvy-Fraunié S, Dangles O (2019) A global synthesis of biodiversity responses to glacier retreat. Nat Ecol Evol 3: 1675–1685. https://doi.org/10.1038/s41559-019-1042-8

    Article  Google Scholar 

  • D’Amico M, Gorra R, Freppaz M 2015. Small-scale variability of soil properties and soil-vegetation relationships in patterned ground on different lithologies (NW Italian Alps). Catena 135: 47–58. https://doi.org/10.1016/j.catena.2015.07.005

    Article  Google Scholar 

  • Deharveng L, D’Haese CA, Bedos A (2008). Global diversity of springtails (Collembola; Hexapoda) in freshwater. Hydrobiologia 595: 329–338. https://doi.org/10.1007/s10750-007-9116-z

    Article  Google Scholar 

  • Erschbamer B, Caccianiga M (2016) Glacier Forelands: Lessons of Plant Population and Community Development. Series Progress in Botany 78: 259–284. Springer International Publishing.

    Google Scholar 

  • Federici PR, Pappalardo M (1995) Recent evolution of the glaciers of the Maritime Alps (L’evoluzione recente dei ghiacciai delle Alpi Marittime.) Geogr Fis Din Quat 18: 257–269. (In Italian)

    Google Scholar 

  • Federici PR, Pappalardo M (2010) Glacier retreat in the maritime alps area. Geogr. Ann. Ser. Phys. Geogr. 92, 361–373. https://doi.org/10.1111/j.1468-0459.2010.00401.x

    Article  Google Scholar 

  • Ficetola GF, Marta S, Guerrieri A, et al. (2021) Dynamics of ecological communities following current retreat of glaciers. Ann Rev Ecol Evol Syst 52:405–426. https://doi.org/10.1146/annurev-ecolsys-010521-040017

    Article  Google Scholar 

  • Gereben-Krenn B-A (1995) Co-occurence and Michrohabitat Distribution of Six Nebria species (Coleoptera: Carabidae) in an Alpine Glacier Retreat Zone in the Alps, Austria. Arct Alp Res 27: 371–379.

    Article  Google Scholar 

  • Gibson MJ, Glasser NF, Quincey DJ, et al. (2017) Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology 295: 572–585. https://doi.org/10.1016/j.geomorph.2017.08.012

    Article  Google Scholar 

  • Gisin H (1960) Springtail fauna of Europe (Collembolenfauna Europas), 1st ed. Geneva: Museum D’Histoire Naturelle. (In German).

    Google Scholar 

  • Gobbi M, Bernardi FD, Pelfini M, et al. (2006) Epigean Arthropod Succession along a 154-year Glacier Foreland Chronosequence in the Forni Valley (Central Italian Alps). Arct Antarct Alp Res 38: 357–362. https://doi.org/10.1657/1523-0430(2006)38[357:EASAAY]2.0.CO;2

    Article  Google Scholar 

  • Gobbi M, Rossaro B, Vater A, et al. (2007) Environmental features influencing Carabid beetle (Coleoptera) assemblages along a recently deglaciated area in the Alpine region. Ecol Entomol 32: 682–689. https://doi.org/10.1111/j.1365-2311.2007.00912.x

    Article  Google Scholar 

  • Gobbi M, Caccianiga M, Cerabolini BEL, et al. (2010) Plant Adaptative Responses during Primary Succession Are Associated with Functional Adaptations in Ground Beetles on Recently Deglaciated Terrain. Community Ecol 11: 223–231.

    Article  Google Scholar 

  • Gobbi M, Isaia M, De Bernardi F (2011) Arthropod colonisation of a debris-covered glacier. The Holocene 21: 343–349. https://doi.org/10.1177/0959683610374885

    Article  Google Scholar 

  • Gobbi M, Ballarin F, Brambilla M, et al. (2017) Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland: Functional traits in harsh environments. Ecol Entomol 42: 838–848. https://doi.org/10.1111/een.12456

    Article  Google Scholar 

  • Gobbi M (2020) Global warning: challenges, threats and opportunities for ground beetles (Coleoptera: Carabidae) in high altitude habitats. Acta Zool Acad Sci Hung 66: 5–20. https://doi.org/10.17109/AZH.66.Suppl.5.2020

    Article  Google Scholar 

  • Gobbi M, Lencioni V (2021) Glacial Biodiversity: Lessons from Ground-dwelling and Aquatic Insects, in: Kanao, M., Godone, D., Dematteis, N. (Eds.), Glaciers and the Polar Environment. IntechOpen. https://doi.org/10.5772/intechopen.92826

    Google Scholar 

  • Hågvar S, Gobbi M, Kaufmann R, et al. (2020) Ecosystem Birth near Melting Glaciers: A Review on the Pioneer Role of Ground-Dwelling Arthropods. Insects 11, 644. https://doi.org/10.3390/insects11090644

    Article  Google Scholar 

  • Hammer Ø (1999–2021) PAST: PALeontological STatistics, Version 4.05. Reference manual. 284 pp.

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4: 9.

    Google Scholar 

  • Hannss C (1970) The southernmost Alpine glaciers: observations about glacier morphology in the Maritime Alps, Italian slope (Les glaciers les plus méridionaux des Alpes: Observations de morphologie glaciaire dans les Alpes maritimes, versant italien.) Rev Géographie Alp 58: 619–648. https://doi.org/10.3406/rga.1970.3506 (In French)

    Article  Google Scholar 

  • Harry I, Drees C, Höfer H, et al. (2011). When to sample in an inaccessible landscape: a case study with carabids from the Allgäu (northern Alps) (Coleoptera, Carabidae) 17.

    Google Scholar 

  • Holten JI (2003) Altitudinal ranges and spatial patterns of alpine plants in Northern Europe., in: In: Nagy L, Grabherr G, Körner C, Thompson DBA (Eds) Alpine Biodiversity in Europe. Ecological Studies (Analysis and Synthesis). Springer, Berlin, pp. 173–184.

    Chapter  Google Scholar 

  • Isaia M, Pantini P, Beikes S et al. (2007) Census of spiders (Arachnida, Araneae) of Piedmont and Lombardy (Catalogo ragionato dei ragni (Arachnida, Araneae) del Piemonte e della Lombardia). Assoc. Naturalistica Piemontese, Erscheinungsort nicht ermittelbar. (In Italian)

    Google Scholar 

  • Isaia M, Mammola S (2018) Vesubia jugorum. The IUCN Red List of Threatened Species 2018: e.T98700253A98700319.

    Google Scholar 

  • Jong, Y, et al. (2014) Fauna Europaea - all European animal species on the web. Biodivers. Data J. 2. https://doi.org/10.3897/BDJ.2.e4034

    Google Scholar 

  • Jordana R (2012) Capbrynae & Entomobryni, Synopses on Palaearctic Collembola. Senckenberg Museum of Natural History Görlitz.

    Google Scholar 

  • Kaufmann R (2001) Invertebrate Succession on an Alpine Glacier Foreland. Ecology 82: 2261–2278.

    Article  Google Scholar 

  • Kaufmann R, Fuchs M, Gosterxeier N (2002a) The Soil Fauna of an Alpine Glacier Foreland: Colonization and Succession. Arct Antarct Alp Res 34: 242–250.

    Article  Google Scholar 

  • Kaufmann R, Juen A (2002b) Habitat use and niche segregation of the genus Nebria (Coleoptera: Carabidae) in the Austrian Alps. Bull Société Entomol Suisse 74: 237–254.

    Google Scholar 

  • Khedim N, Cécillon L, Poulenard, et al. (2021) Topsoil organic matter build-up in glacier forelands around the world. Glob Change Biol 27: 1662–1677. https://doi.org/10.1111/gcb.15496

    Article  Google Scholar 

  • Kreyszig E (1979) Advanced Engineering Mathematics, 4th ed. Wiley.

    Google Scholar 

  • Landolt E, Bäumler A, Erhardt O, et al. (2010) Flora Indicativa, Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps. Editions Conservatoire Et Jardin Bot de la Ville de Genève, Genève.

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, 2nd ed. Elsevier Science.

    Google Scholar 

  • Lencioni V, Gobbi M (2021) Monitoring and conservation of cryophilous biodiversity: concerns when working with insect populations in vanishing glacial habitats. Insect Conserv Divers 14(6): 723–729. https://doi.org/10.1111/icad.12522

    Article  Google Scholar 

  • Mammola S, Milano F, Cardoso P, et al. (2016) Species conservation profile of the alpine stenoendemic spider Vesubia jugorum (Araneae, Lycosidae) from the Maritime Alps. Biodivers. Data J. 4, e10527. https://doi.org/10.3897/BDJ.4.e10527

    Article  Google Scholar 

  • Marcante S, Schwienbacher E, Erschbamer E (2009) Genesis of a Soil Seed Bank on a Primary Succession in the Central Alps. Flora 204: 434–444.

    Article  Google Scholar 

  • Mateos E (2012) The European Lepidocyrtus lanuginosus group (Collembola: Entomobryidae), definition and description of a new species from Spain. Zootaxa 3570: 69. https://doi.org/10.11646/zootaxa.3570.1.5

    Article  Google Scholar 

  • Matthews JA (1992) The ecology of recently deglaciated terrain: A geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge.

    Google Scholar 

  • Matthews JA, Hill JL, Winkler S, Owen G, Vater AE (2018) Autosuccession in alpine vegetation: Testing the concept on an altitudinal bioclimatic gradient, Jotunheimen, southern Norway. Catena 170: 169–182. https://doi.org/10.1016/j.catena.2018.06.012

    Article  Google Scholar 

  • Medail F, Quezel P (1999) Biodiversity Hotspots in the Mediterranean Basin: Setting Global Conservation Priorities. Conserv Biol 13: 1510–1513. https://doi.org/10.1046/j.1523-1739.1999.98467.x

    Article  Google Scholar 

  • Mihalcea C, Mayer C, Diolaiuti G, et al. (2008) Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Ann Glaciol 48: 49–57. https://doi.org/10.3189/172756408784700680

    Article  Google Scholar 

  • Moret P., Barragán Á, Moreno E, et al. (2020) When the Ice Has Gone: Colonisation of Equatorial Glacier Forelands by Ground Beetles (Coleoptera: Carabidae). Neotrop Entomol 49: 213–226. https://doi.org/10.1007/s13744-019-00753-x

    Article  Google Scholar 

  • Mori AS, Osono T, Uchida M, et al. (2008) Changes in the structure and heterogeneity of vegetation and microsite environments with the chronosequence of primary succession on a glacier foreland in Ellesmere Island, high arctic Canada. Ecol Res 23: 363–370. https://doi.org/10.1007/s11284-007-0388-6

    Article  Google Scholar 

  • Nakawo M, Rana B (1999) Estimate of Ablation Rate of Glacier Ice under a Supraglacial Debris Layer. Geografiska Ann 81: 695–701.

    Article  Google Scholar 

  • Nayrolles P, Lienhard C (1990) Description of a new species of Prorastiopes in Switzerland) (Description d’une nouvelle espèce de Prorastriopes de Suisse (Collembola Symphypleona)). Rev Suisse Zool 97: 623–628. (In French)

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting a Climate Signal from 169 Glacier Records. Science 308: 675–677. https://doi.org/10.1126/science.1107046

    Article  Google Scholar 

  • Pantini P, Isaia M (2019) Araneae.it: the online Catalog of Italian spiders with addenda on other Arachnid Orders occurring in Italy (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpionida, Scorpiones, Solifugae). Fragm Entomol 51: 127–152.

    Article  Google Scholar 

  • Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob Planet Change 56: 111–122. https://doi.org/10.1016/j.gloplacha.2006.07.007

    Article  Google Scholar 

  • Paul F, Bolch T, Kääb A, et al. (2015) The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens Environ 162: 408–426. https://doi.org/10.1016/j.rse.2013.07.043

    Article  Google Scholar 

  • Pesarini C, Monzini V (2010) Insects of Italian Fauna. Carabid beetles I (Insetti della Fauna Italiana Coleotteri Carabidi (I).) Natura Rivista Sci Nat 100: 152. (In Italian)

    Google Scholar 

  • Pesarini C, Monzini V (2011) Insects of Italian Fauna. Carabid beetles II (Insetti della Fauna Italiana Coleotteri Carabidi (II)). Soc Ital Sci Nat 101: 144. (In Italian)

    Google Scholar 

  • Piana F, Fioraso G, Irace A, et al. (2017) Geology of Piemonte region (NW Italy, Alps-Apennines interference zone). Journal Map13: 395–405. https://doi.org/10.1080/17445647.2017.1316218

    Article  Google Scholar 

  • Pignatti S (2017) Flora of Italy (Flora d’Italia), 2°. ed. Edagricole, Milano. (In Italian)

    Google Scholar 

  • Podani J, Csányi B (2010) Detecting indicator species: Some extensions of the IndVal measure. Ecol Indic 10: 1119–1124. https://doi.org/10.1016/j.ecolind.2010.03.010

    Article  Google Scholar 

  • Potapov M (2001) Isotomidae, Synopses on Palaearctic Collembola. Senckenberg Museum of Natural History Görlitz.

    Google Scholar 

  • Rapetti F, Vittorini S (1992) Some aspects of the climate of Gesso Valley (Maritime Alps) in relation to the occurrence of some small glaciers (Aspetti del Clima del bacino del Gesso (Alpi Marittime) in relazione alla presenza di alcuni piccoli ghiacciai.) Geogr Fis Din Quat 15: 149–158. (In Italian)

    Google Scholar 

  • Roberts MJ (1995) Spiders of Britain and Northern Europe, Collins Field Guide.

    Google Scholar 

  • Roe GH, Baker MB, Herla F (2017) Centennial glacier retreat as categorical evidence of regional climate change. Nat Geosci 10: 95–99. https://doi.org/10.1038/ngeo2863

    Article  Google Scholar 

  • Rolland C (2003) Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J Clim 16: 1032–1046.

    Article  Google Scholar 

  • Rosero P, Crespo-Pérez V, Espinosa R, et al. (2021) Multitaxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44: 1010–1021. https://doi.org/10.1111/ecog.05478

    Article  Google Scholar 

  • Rusek J (2001) Microhabitats of Collembola (Insecta: Entognatha) in beech and spruce forests and their influence on biodiversity. Eur J Soil Biol 37: 237–244. https://doi.org/10.1016/S1164-5563(01)01090-1

    Article  Google Scholar 

  • Schauwecker S, Rohrer M, Huggel C, et al. (2015) Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. J Glaciol 61: 675–688. https://doi.org/10.3189/2015JoG14J102

    Article  Google Scholar 

  • Schonswetter P, Stehlik I, Holderegger R, et al. (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14: 3547–3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x

    Article  Google Scholar 

  • Smiraglia C, Diolaiuti G (2015) New census of Italian glaciers (Il Nuovo Catasto dei Ghiacciai Italiani.) Ev-K2-CNR Ed., Bergamo. (In Italian).

    Google Scholar 

  • Tampucci D, Gobbi M, Boracchi P, et al. (2015) Plant and arthropod colonisation of a glacier foreland in a peripheral mountain range. Biodiversity 16: 213–223. https://doi.org/10.1080/14888386.2015.1117990

    Article  Google Scholar 

  • Thaler K (1988) Areal forms in the nival spider fauna of the Eastern Alps (Arealformen in der nivalen Spinnenfauna der Ostalpen (Arachnida, Aranei). Zool Anz 220: 233–244. (In German)

    Google Scholar 

  • Thibaud JM, Schulz HJ, da Gama Assalino MM (2004) Hypogastruridae, Synopses on Palaearctic Collembola. Senckenberg Museum of Natural History Görlitz.

    Google Scholar 

  • Valle B, Ambrosini R, Caccianiga M, et al. (2020) Ecology of the cold-adapted species Nebria germari (Coleoptera: Carabidae): the role of supraglacial stony debris as refugium during the current interglacial period. Acta Zool Acad Sci Hung 66: 199–220. https://doi.org/10.17109/AZH.66.Suppl.199.2020

    Article  Google Scholar 

  • Valle B, Cucini C, Nardi F, et al. (2021) Desoria calderonis sp. nov., a new species of alpine cryophilic springtail (Collembola: Isotomidae) from the Apennines (Italy), with phylogenetic and ecological considerations. European Journal of Taxonomy, 787(1): 32–52. https://doi.org/10.5852/ejt.2021.787.1599

    Article  Google Scholar 

  • Valle B, Di Musciano M, Gobbi M, et al. (2022) Biodiversity and ecology of plants and arthropods on the last preserved glacier of the Apennines mountain chain (Italy). The Holocene. 32(8): 853–865. https://doi.org/10.1177/09596836221096292

    Article  Google Scholar 

  • Vater AE, Matthews JA (2013) Testing the ‘addition and persistence model’ of invertebrate succession in a subalpine glacier-foreland chronosequence: Fåbergstølsbreen, southern Norway. The Holocene 23: 1151–1162. https://doi.org/10.1177/0959683613483623

    Article  Google Scholar 

  • Vater AE, Matthews JA (2015) Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: Patterns and models. The Holocene 25: 108–129. https://doi.org/10.1177/0959683614556374

    Article  Google Scholar 

  • Villemant C, Daugeron C, Gargominy O, et al. (2015) The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37: 667–679. https://doi.org/10.5252/z2015n4a10

    Article  Google Scholar 

  • Walker DA, Epstein HE, Gould WA, et al. (2004) Frost-boil ecosystems: complex interactions between landforms, soils, vegetation and climate. Permafr Periglac Process 15: 171–188. https://doi.org/10.1002/ppp.487

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21: 213–251. https://doi.org/10.2307/1218190

    Article  Google Scholar 

  • Widenfalk LA, Malmström A, Berg MP, et al. (2016 Small-scale Collembola community composition in a pine forest soil - Overdispersion in functional traits indicates the importance of species interactions. Soil Biol Biochem 103: 52–62. https://doi.org/10.1016/j.soilbio.2016.08.006

    Article  Google Scholar 

  • Zeleny D (2022) Analysis of community ecology data in R. Ordination analysis. Available online at: https://www.davidzeleny.net/anadatr/doku.php/en:ordination (Accessed on June 2022)

    Google Scholar 

Download references

Acknowledgements

The research was funded by Ente di Gestione delle Aree protette delle Alpi Marittime (Managing Body of protected areas of Maritime Alps) for the research project “Monitoraggio della vegetazione periglaciale dei ghiacciai Clapier e Peirabroc (Alpi Marittime)”, (Monitoring of proglacial vegetation of Clapier and Peirabrocn glaciers (Maritime Alps)) within the project ALCOTRA n. 1711 CClimaTT.

Funding

Funding note: Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement.

Author information

Authors and Affiliations

  1. Università degli Studi di Milano, Department of Biosciences, Via Celoria 26, 20133, Milano, Italy

    Barbara Valle, Marta Tognetti, Marina Serena Borgatti & Marco Caccianiga

  2. MUSE - Science Museum of Trento, Research and Museum Collections Office, Climate and Ecology Unit, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy

    Mauro Gobbi

  3. Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Via Mangiagalli 34, 20133, Milano, Italy

    Chiara Compostella

  4. Museo Civico di Scienze Naturali “E. Caffi”, Piazza della Cittadella, 10, 24129, Bergamo, Italy

    Paolo Pantini

Authors
  1. Barbara Valle
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mauro Gobbi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Marta Tognetti
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Marina Serena Borgatti
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Chiara Compostella
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Paolo Pantini
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Marco Caccianiga
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Barbara Valle.

Electronic Supplementary Material

Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valle, B., Gobbi, M., Tognetti, M. et al. Glacial biodiversity of the southernmost glaciers of the European Alps (Clapier and Peirabroc, Italy). J. Mt. Sci. 19, 2139–2159 (2022). https://doi.org/10.1007/s11629-022-7331-8

Download citation

  • Received: 22 January 2022

  • Revised: 13 June 2022

  • Accepted: 15 July 2022

  • Published: 20 August 2022

  • Issue Date: August 2022

  • DOI: https://doi.org/10.1007/s11629-022-7331-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Arthropod communities
  • Cold-adapted species
  • Glacier forelands
  • Plant communities
  • Primary succession
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.