Skip to main content
Log in

Post-orogenic transients and relict landforms of the Bafoussam - Mamfe region (West-Cameroon Highland margin)

  • Original Article
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The Bafoussam-Mamfe Region (BMR) belongs to the Western Cameroon Highland margin, an amalgam of transient landscape that evolved from the interactions between tectonics, lithology and climate forcings. This area is tectonically active and shows differential tectonic uplift, contrasting relief, variations in erosion rates, in river incision, and in channel gradient. In order to appraise the BMR tectono-geomorphic evolution, it is essential to understand relationships between internal and external processes and their geomorphic expression at a river basin scale. For this purpose, we use drainage texture (Dt), stream frequency (Fs), drainage density (Dd), asymmetry factor (AF), the transverse topographic symmetry factor (TTSF), the mean of mountain front sinuosity per unit (Smf), concavity factor (Cf), hypsometry integral (HI) and stream-length gradient index (SL-index) based on 30 m Digital Elevation Models (DEM) and field survey. The results reveal considerable variations in geology, relief, topography and geomorphic indices values differentiated into three geomorphic units; the Mamfe unit developed on the Mamfe Cretaceous basin, the Nguti and Bafoussam high plateau units build up on the Precambrian granito-gneissic basement overlaid by a volcanic cover. The stepped (longitudinal and normalized) river profiles and complex hypsometric curves show the lithostructural control of the hydrographic network. Dt (from ∼1.21 to ∼4.59), Fs (from ∼0.26 to ∼1.91), Dd (from ∼0.66 to ∼1.71) geomorphic indice values indicate a part of lithologic control on this morphology while the AF (from ∼1.16 to ∼24.91), TTSF (from ∼0.20 to ∼0.71), Smf (U2 = 1.11 and U3 = 1.19), Cf (from ∼−20.91 to ∼78.93), HI (from ∼0.12 to ∼0.52) and SL-index designate the active tectonics as the main factor that had controlled the morphology of this same area. Above results pinpoint the combined post-Pan-African to Recent tectonic features, lithologic heterogeneities and the differential erosion processes as main factors that have controlled the BMR landscape. These results highlight how the Central African surface and the West African passive margin evolved since Proterozoic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolo MG (2008) Geology and petroleum potential of the Mamfe Basin, Cameroon, Central Africa. Afr Geosci Rev 1(2): 65–77.

    Google Scholar 

  • Ajay Kumar TP, Kumar CR, Avtar SJ, et al. (2017) Active tectonic deformation along reactivated faults in Binta basin in Kumaun Himalaya of north India: inferences from tectonogeomorphic evaluation. Z Geomorphol 61(2): 159–180.

    Article  Google Scholar 

  • Alipoor R, Poorkermani M, Zare M, et al. (2011) Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology 128(1): 1–14. https://doi.org/10.1016/j.geomorph.2010.10.014

    Article  Google Scholar 

  • Allmendinger RW, Cardozo NC, Fisher D (2012) Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, p 289.

    Google Scholar 

  • Ambeh BW, Fairhead JD, Stuart GW (1988) Seismicity, structure and tectonics of the Cameroon volcanic line. Publication University of Leeds, Department of Earth Sciences, U.K.

    Google Scholar 

  • Ambili AC, Narayana V (2014) Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology 217: 37–47. https://doi.org/10.1016/j.geomorph.2014.04.013

    Article  Google Scholar 

  • Andermann C, Gloaguen R (2009) Estimation of erosion in tectonically active orogenies. Example from the Bhotekoshi catchment, Himalaya (Nepal). Int J Rem Sens 30: 3075–3096. https://doi.org/10.1080/01431160802558733

    Article  Google Scholar 

  • Aretouyap Z, Kemgan F, Domra J, et al. (2021) Understanding the occurrences of fault and landslide in the region of West-Cameroon using remote sensing and GIS techniques. Nat Hazards 109: 1589–1602. https://doi.org/10.1007/s11069-021-04890-8

    Article  Google Scholar 

  • Balla Ateba C, Owona S, Nsangou Ngapna M, et al. (2021) Lithostructural controls in Douala-Buea Region landscape (SW Cameroon margin): Insights from morphometric analysis. J Mt Sci 18(1): 68–87. https://doi.org/10.1007/s11629-020-6085-4

    Article  Google Scholar 

  • Bamford MK (2000) Cenozoic macro-plants. In: Partridge TC, Maud RR (Eds.), The Cenozoic of Southern Africa. Oxford University Press, Oxford, pp 351–356.

    Google Scholar 

  • Bamford MK, de Wit MCJ (1993) Taxonomic description of fossil wood from Cainozoic Sak river terraces, near Brandvlei, Bushmanland, South Africa. Palaeontol Afr 30: 71–80.

    Google Scholar 

  • Benkhelil J (1988) Structure et évolution géodynamique du bassin intracontinental de la Bénoué (Nigeria). Bull Centre Rech Expl Prod Elf Aquitaine 12: 29–128.

    Google Scholar 

  • Boulvert Y (1996) Etude géomorphologique de la République Centrafricaine. Carte à 1/1 000 000 en deux feuilles ouest et est. Office de Recherche Scientifique et Technique Outre-Mer (ORSTOM), Paris. p 258.

    Google Scholar 

  • Bull WB, McFadden LD (1977) Tectonic geomorphology North and South of the Garlock fault, California. In: Doehring DO (ed) Geomorphology in Arid Regions. Proc Eighth Ann Geomorph Symp. State University of New York, Binghamton. pp 115–138.

    Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic Geomorphology. Blackwell Science, Cambridge. p 274.

    Google Scholar 

  • Burke K, Gunnell Y (2008) The African Erosion Surface: a Continental-Scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Million Years. Geol Soc Am Mem 201: 66. https://doi.org/10.1130/2008.1201

    Google Scholar 

  • Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet: Comp & Geosci 51(0): 193–205. https://doi.org/10.1016/j.cageo.2012.07.021

    Article  Google Scholar 

  • Caxito FA, Santos LCML, Ganade CE, et al. (2020) Toward an integrated model of geological evolution for NE Brazil-NW Africa: The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Sial AN, Ferreira VP (Eds), Special session, “A tribute to Edilton Santos, a leader in Precambrian Geology in Northeastern Brazil”. Braz J Geol 50(2): 1–38. https://doi.org/10.1590/2317-4889202020190122

    Article  Google Scholar 

  • Chen YC, Sung Q, Cheng KY (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream gradient and hypsometric analysis. Geomorphology 56(1): 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X

    Article  Google Scholar 

  • Clift PD, Gaedicke C (2002) Accelerated mass flux to the Arabian Sea during the middle to late Miocene. Geol 30: 207–210. https://doi.org/10.1130/0091-7613(2002)030<0207:AMFTTA>2.0.CO;2

    Article  Google Scholar 

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106 (5): 571–581. https://doi.org/10.1130/00167606(1994)106<0571:AODBSA>2.3.CO;2

    Article  Google Scholar 

  • Das S (2018) Geomorphic characteristics of a bedrock river inferred from drainage quantification, longitudinal profile, knickzone identification and concavity analysis: a DEM based study. Arab J Geosci 11: 680. https://doi.org/10.1007/s12517-018-4039-8

    Article  Google Scholar 

  • Dauteuil O, Bessin P, Guillocheau F (2015) Topographic growth around the Orange River valley, southern Africa: a Cenozoic record of crustal deformation and climatic change. Geomorphology 233: 5–19. https://doi.org/10.1016/j.geomorph.2014.11.017

    Article  Google Scholar 

  • Demoulin A (1998) Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium NW Europe). Geomorphology 24: 189–208. https://doi.org/10.1016/S0169-555X(98)00016-6

    Article  Google Scholar 

  • Demoulin A (2011) Basin and river profile morphology: a newindexwith a high potential for relative dating of tectonic uplift. Geomorphology 126: 97–107. https://doi.org/10.1016/j.geomorph.2010.10.033

    Article  Google Scholar 

  • Déruelle B, Moreau C, Nkoumbou C, et al. (1991) The Cameroon line: a review. In: Kampunzu AB, Lubala RT (Eds) Magmatism in Extensional Structural Settings. The Phanerozoic African Plate. Springer, Berlin, Germany. pp 274–327.

    Chapter  Google Scholar 

  • Déruelle B, Ngounouno I, Demaiffe D (2007) The “Cameroon Hot Line” (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. CR Geosci 339: 589–600. https://doi.org/10.1016/j.crte.2007.07.007

    Article  Google Scholar 

  • Dingman SL (2009) Fluvial Hydraulics. Univiversity Press New York Oxford, pp. 20–94.

    Google Scholar 

  • Djouka-Fonkwé ML, Schulz B, Schussler U, et al. (2008) Geochemistry of the Bafoussam Pan-African I- and S type granitoids in Western Cameroon. J Afr Earth Sci 50: 148–167. https://doi.org/10.1016/j.jafrearsci.2007.09.015

    Article  Google Scholar 

  • Doucouré CM, de Wit MJ (2003) Old inherited origin for the present near-bimodal topography of Africa. J Afr Earth Sci 36(4): 371–388. https://doi.org/10.1016/S0899-5362(03)00019-8

    Article  Google Scholar 

  • Dumort JC (1968) Carte géologique de reconnaissance du Cameroun à l’échelle 1/500 000, feuille Douala-Ouest, avec notice explicative. Imprimerie Nationale, Yaoundé, Cameroun. p 69.

  • Eyong JT, Wignall P, Fantong WY, et al. (2013) Paragenetic sequences of carbonate and sulphide minerals of the Mamfe Basin (Cameroon): Indicators of palaeo-fluids, palaeo-oxygen levels and diagenetic zones. J Afr Earth Sci 86: 25–44. https://doi.org/10.1016/j.jafrearsci.2013.05.002

    Article  Google Scholar 

  • Fairhead JD, Okereke CS (1987) A regional gravity of the West African rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonoph 143: 141–159. https://doi.org/10.1016/0040-1951(87)90084-9

    Article  Google Scholar 

  • Fairhead JD, Okereke CS (1990) Crustal thinning and extension beneath the Benue Trough based on gravity studies. J Afr Earth Sci 11: 329–335. https://doi.org/10.1016/0899-5362(90)90011-3

    Article  Google Scholar 

  • Feybesse JL, Johan V, Triboulet C, et al. (1998) The West Central African Belt: A model of 2.5-2.0 Ga accretion and two-phase orogenic evolution. Precamb Res 87: 161–216. https://doi.org/10.1016/S0301-9268(97)00053-3

    Article  Google Scholar 

  • Fitton JG, Dunlop HM (1985) The Cameroon Line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet Sci Lett 72: 23–38. https://doi.org/10.1016/0012-821X(85)90114-1

    Article  Google Scholar 

  • Fozing EM, Kwékam M, Tcheumenak Kouémo J, et al. (2021) Kinematic analysis of the Dschang granitic pluton (West-Cameroon): Implications to the Pan-African deformation of the Central African fold belt in Cameroon during the post-collisional history of western Gondwana. Precamb Res 359: 10623. https://doi.org/10.1016/j.precamres.2021.106231

    Google Scholar 

  • Gaidzik K, Ramírez-Herrera MT (2017) Geomorphic indices and relative tectonic uplift in the Guerrero sector of Mexican forearc. Geosc Front 8: 885–902. https://doi.org/10.1016/j.gsf.2016.07.006

    Article  Google Scholar 

  • Gao H, Li Z, Ji Y, et al. (2016) Climatic and tectonic controls on strath terraces along the upper Weihe River in central China. Q Res 1–9. https://doi.org/10.1016/j.yqres.2016.08.004

  • Génieux C (1958) Climatologie du Cameroun. Atlas du Cameroun, Yaoundé, p 4.

  • Guiraud M (1991) Mécanisme de formation du basin crétacé sur décrochements multiples de la Haute Bénoué (Nigéria). BCREDP Elf Aquitaine 15: 11–67.

    Google Scholar 

  • Gunnell Y, Fleitout L (2000) Morphotectonic evolution of the Western Ghats, India, in Geomorphology and global tectonics, edited by M. A. Summerfield, John Wiley & Sons, Chichester, pp 323–338.

  • Hack JT (1957) Studies of Longitudinal Stream-Profiles in Virginia and Maryland: U.S. Geol Surv Prof Pap 294B. pp. 45–97.

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. J Res US Geol Surv 1: 421–429.

    Google Scholar 

  • Horton RE (1932) Drainage basin characteristics. Trans Am Geoph Union 13(1): 350–361. https://doi.org/10.1029/TR013i001p00350

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56: 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • Houketchang Bouyo M, Penaye J, Mouri H, et al. (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a highpressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J Afr Earth Sci 149: 215–234. https://doi.org/10.1016/j.jafrearsci.2018.08.010

    Article  Google Scholar 

  • Ifabiyi IP, Eniolorunda NB (2012) Watershed characteristics and their implication for hydrologic response in the upper sokoto basin, Nigeria. J Geograph Geol 4(2): 147–155.

    Google Scholar 

  • Jofak Sonkeng VC (2016) Cartographie des potentialités en eaux souterraines dans les Hauts plateau de l’Ouest Cameroun: contribution de la télédérection (optique et radar) des Systèmes d’Informations Géographiques et des réseaux de neurones. Thèse doct. État, Univ. Félix Houphouet Boigny d’Abidjan - Cocody, p 297.

  • Keller EA, Pinter N (1996) Active Tectonics. Earthquakes, Uplift and Landscape. Prentice Hall, Upper Saddle River, New Jersey. p 338.

    Google Scholar 

  • Keller EA, Pinter N (2002) Active Tectonics: Earthquakes, Uplift and Landscape. Second ed. Prentice Hall, Upper Saddle River, New Jersey. p 362.

    Google Scholar 

  • Khavari R, Arian M, Ghorashi M (2009) Neotectonics of the South Central Alborz drainage basin, in NW Tehran, N Iran. J Appl Sci 9: 4115–4126. https://doi.org/10.3923/jas.2009.4115.4126

    Article  Google Scholar 

  • Kirby E, Ouimet W (2011) Tectonic geomorphology along the eastern margin of Tibet: insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. In: Gloaguen R, Ratschbacher L (Eds) Growth and Collapse of the Tibetan Plateau 353. Geol Soc, London, Special Publ pp 165–188. https://doi.org/10.1144/SP353.9

    Google Scholar 

  • Kirby E, Whipple KX (2012) Expression of active tectonics in erosional landscapes. J Struct Geol 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009

    Article  Google Scholar 

  • Kirby E, Whipple KX, Tang W, et al. (2003) Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. J Geoph Res 108: 2217. https://doi.org/10.1029/2001JB000861

    Article  Google Scholar 

  • Koukouvelas IK, Piper DJW, Katsonopoulou D, et al. (2020) Earthquake-triggered landslides and mudflows: Was this the wave that engulfed Ancient Helike? The Holocene 30(12): 1653–1668. https://doi.org/10.1177/0959683620950389

    Article  Google Scholar 

  • Koukouvelas IK, Zygouri V, Nikolakopoulos K, et al. (2018) Treatise on the tectonic geomorphology of active faults: The significance of using a universal digital elevation model. J Struct Geol 116: 241–252. https://doi.org/10.1016/j.jsg.2018.06.007

    Article  Google Scholar 

  • Kwékam M, Liégeois JP, Njonfang E, et al. (2010) Nature, origin and significance of the Fomopéa Pan-Africain high-k calcalcaline plutonic complex in the Central Africa Fold Belt (Cameroon). J Afr Earth Sci 57: 79–95. https://doi.org/10.1016/j.jafrearsci.2009.07.012

    Article  Google Scholar 

  • Lawrence SR, Munday S, Bray R (2002) Regional geology and geophysics of the Eastern Gulf of Guinea. Exploration Consultants, Henley-on-Thames, Englaud K. The Leading Edge 21: 1112–1117. https://doi.org/10.1190/1.1523752

    Article  Google Scholar 

  • Le Fur Y (1965) Mission socle-Crétacé. Rapport 1964–1965 sur les indices de plomb et de zinc du golfe de Mamfe. Tech. Rep., Rapport B.G.R.M., Cameroun.

  • Lerouge C, Coherie A, Toteu SF, et al. (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, south-western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sci 44: 413–427. https://doi.org/10.1016/j.jafrearsci.2005.11.010

    Article  Google Scholar 

  • Letouzey R (1968) Etude phytogéographique du Cameroun. Lechevalier, Paris. https://www.fao.org/docrep/006/r4968f/R4968F07.htm

    Google Scholar 

  • Lifton NA, Chase, CG (1992) Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology 5(1): 77–114. https://doi.org/10.1016/0169-555X(92)90059-W

    Article  Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Paleoproterozoic plate tectonics. Precamb Res 304: 1–11. https://doi.org/10.1016/j.precamres.2017.10.018

    Article  Google Scholar 

  • Lordon Djieto AE, Yossa M, Agyingi CM, et al. (2018) Geometrical Characterisation of the Mamfe Basin, Cameroon, from the Earth, Gravitational Model (EGM 2018). Earth Sci Res 7: 1–12. https://doi.org/10.5539/esr.v7n1p94

    Article  Google Scholar 

  • Mahmood SA, Gloaguen R (2012) Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geos Front 3(4): 407–428. https://doi.org/10.1016/j.gsf.2011.12.002

    Article  Google Scholar 

  • Matoš B, Tomljenovic B, Trenc N (2014) Identification of tectonically active areas using DEM: a quantitative morphometric analysis of Mt. Medvednica, NW Croatia. Geol Quart 58(1). https://doi.org/10.7306/gq.1130

    Google Scholar 

  • Maurizot P, Abessolo A, Feybesse A, et al. (1986) Etude et prospection minière au Sud-Ouest Cameroun. Synthèse des travaux de 1978–1985. Rapport BRGM, 85 CNRS 066, Orléans. p 274.

  • Michel Popoff (1988) Du Gondwana à l’Atlantique sud: les connexions du fossé de la Bénoué avec les bassins du Nord-Est brésilien jusqu’à l’ouverture du golfe de Guinée au Crétacé inférieur. J Afr Earth Sci 7(2): 409–431.

    Article  Google Scholar 

  • Montigny R, Ngounouno I, Déruelle B (2004) Ages K-Ar des roches magmatiques du fossé de Garoua (Cameroun): leur place dans le cadre de la “Ligne du Cameroun”. CR Géosci 336: 1463–1471. https://doi.org/10.1016/j.crte.2004.08.005

    Article  Google Scholar 

  • Ngako V, Njonfang E, Aka FT, et al. (2006) The North-South Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroon: Complex interaction between hotspots and Precambrian faults. J Afr Earth Sci 45: 241–256. https://doi.org/10.1016/j.jafrearsci.2006.03.003

    Article  Google Scholar 

  • Ngounouno I, Déruelle B (1997) Données nouvelles sur le volcanisme cénozoïque du plateau Kapsiki (Nord du Cameroun). Comptes rendus de l’Académie des sciences. Série 2. Sciences de la terre et des planètes 324: 285–292. https://doi.org/10.1016/S1251-8050(97)83968-7

    Google Scholar 

  • Nguene FR, Tamfu SF, Loule JP, et al. (1992) Paleoenvironments of the Douala and Kribi/Campo sub basins, in Cameroon, West Africa. Colloque Africain de Micropaléontologie, 6–8 Mai 1991, Libreville, Gabon. Bull Centre Rech Expl Prod Elf Aquitaine 3: 129–139.

    Google Scholar 

  • Nguiessi Tchankam C, Nzenti JP, Nsifa NE, et al. (1997) Les granitoides calco-alcalins, syn-cisaillement de Bandja dans la chaine Pan-Africaine Nord-Equatoriale au Cameroun. CR Acad Sci Paris 325: 95–101. https://doi.org/10.1016/S1251-8050(97)83969-9

    Google Scholar 

  • Nguimbous-Kouoh JJ, Takougang EM, Nouayou R, et al. (2012) Structural Interpretation of the Mamfe Sedimentary Basin of Southwestern Cameroon along the Manyu River using Audiomagnetotellurics Survey. Inter Schol Res Netw Geoph p 7. https://doi.org/10.5402/2012/413042

  • Njanko T, Nédélec A, Kwékam M, et al. (2010) Emplacement and deformation of the Fomopéa pluton: Implication for the Pan-African history of Western Cameroon. J Struct Geol 3: 306–320. https://doi.org/10.1016/j.jsg.2009.12.007

    Article  Google Scholar 

  • Njiekak G, Dörr W, Tchouankoué JP, et al. (2008) U-Pb zircon and microfabric data of (meta) granitoids of western Cameroon: Constraints on the timing of pluton emplacement and deformation in the Pan-African belt of central Africa. Lithos 102: 460–477. https://doi.org/10.1016/j.1ithos.2007.07.020

    Article  Google Scholar 

  • Njoh OA, Nforsi MB, Datcheu JN (2015) Aptian-Late Cenomanian Fluvio-Lacustrine Lithofacies and Palynomorphs from Mamfe Basin, Southwest Cameroon, West Africa. Int J Geosci 795–811. https://doi.org/10.4236/ijg.2015.67064

  • Njome, MS, De Wit MJ (2014) The Cameroon Line: analysis of an intraplate magmatic province transecting both oceanic and continental lithospheres: constraints, controversies and models. Earth Sci Rev 139: 168–194. https://doi.org/10.1016/j.earscirev.2014.09.003

    Article  Google Scholar 

  • Njonfang E, Moreau C (1996) The mineralogy and geochemistry of a Sub-Volcanic Alkaline complex from the Cameroon Line: The Nda-Ali Massif, South-West Cameroon. J Afr Sci 22: 113–132. https://doi.org/10.1016/0899-5362(96)00126-1

    Google Scholar 

  • Njonfang E, Moreau C (2000) The mafic mineralogy of the Pandé massif, Tikar Plain, Cameroon: implications for a peralkaline affinity and emplacement from highly evolved alkaline magma. Mineral Mag 64: 525–537. https://doi.org/10.1180/002646100549409

    Article  Google Scholar 

  • Njonfang E, Ngako V, Moreau C, et al. (2008) Restraining bends in high temperature shear zones: The Central Cameroon Shear Zone, Central Africa. J Afr Earth Sci 52: 9–20. https://doi.org/10.1016/j.jafrearsci.2008.03.002

    Article  Google Scholar 

  • Nouayou R (2005) Contribution à l’étude géophysique du bassin sédimentaire de Mamfe par prospections audio et héliomagnétotelluriques. MSc Thesis, spécialité Géophysique Interne, Université de Yaoundé I, Yaoundé, p 60.

  • Nsangou Ngapna M, Owona S, Balla Ateba C, et al. (2022) The Western Cameroon Highland margin: Is there any geomorphometric evidence of active tectonics. Geol J 1–22. https://doi.org/10.1002/gj.4449

  • Nsangou Ngapna M, Owona S, Mvondo Owono F, et al. (2018) Tectonics, lithology and climate controls of morphometric parameters of the Edea - Eseka region (SW Cameroon, Central Africa): Implications on equatorial rivers and landforms. J Afr Earth Sci 138: 219–232. https://doi.org/10.1016/j.jafrearsci.2017.11.008

    Article  Google Scholar 

  • Nsangou Ngapna M, Owona S, Mvondo Owono F, et al. (2019) Evolution of the Edea-Eseka geomorphic units: a “natural laboratory” of a prototype active rifting cross-cutting the Southern Cameroon (West African) passive margin. Geoll J 55: 4864–4888. https://doi.org/10.1002/gj.3717

    Article  Google Scholar 

  • Nsangou Ngapna M, Owona S, Mvondo Owono F, et al. (2020) Assessment of relative active tectonics in Edea - Eseka region (SW Cameroon, Central Africa). J Afr Earth Sci 164: 103798. https://doi.org/10.1016/j.jafrearsci.2020.103798

    Article  Google Scholar 

  • Nsangou Ngapna M, Owona S, Youmen D, et al. (2013) Contrôle géologique des unités morphotectoniques de la région d’Edéa - Eséka (SW Cameroun). Sci Vie Terre Agro, Rev CAMES 01: 47–54.

    Google Scholar 

  • Olivry JC (1986) Fleuves et rivières du Cameroun. MESRESORSTOM, Paris. p 745.

  • Owona S, Mbola Ndzana SP, Mvondo Ondoa J, et al. (2012) Geological control of morphotectonic units in the southwest Cameroon (central Africa). J Geol Mining Res 4: 152–167. https://doi.org/10.5897/JGMR12.007

    Google Scholar 

  • Owona S, Ratschbacher L, Afzal MG, et al (2020) New U-Pb zircon ages of Nyong Complex meta-plutonites: Implications for the Eburnean/Trans-Amazonian Orogeny in southwestern Cameroon (Central Africa). Geoll J 56(4): 1741–1755. https://doi.org/10.1002/gj.4022

    Article  Google Scholar 

  • Owona S, Ratschbacher L, Nsangou Ngapna M, et al. (2021) How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology. Precamb Res 359: 106220. https://doi.org/10.1016/j.precamres.2021.106220

    Article  Google Scholar 

  • Pareta K, Pareta U (2011) Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Int J Geom Geosci 2(1): 248–269.

    Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, et al. (2004) The 2.1 Ga West Central African belt in Cameroon. J Afr Earth Sci 39: 159–164. https://doi.org/10.1016/j.jafrearsci.2004.07.053

    Article  Google Scholar 

  • Pérez-Peña JV, Al-Awabdeh M, Azañón JM, et al. (2016) SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the Automatic extraction of swath and normalized river profiles. Comp Geosci 104: 135–150. https://doi.org/10.1016/j.cageo.2016.08.008

    Article  Google Scholar 

  • Pérez-Peña JV, Azañón JM, Azor A (2009) CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comp Geosci 35: 1214–1223. https://doi.org/10.1016/j.cageo.2008.06.006

    Article  Google Scholar 

  • Pérez-Peña JV, Azor A, Azañón JM, et al. (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119(1): 74–87. https://doi.org/10.1016/j.geomorph.2010.02.020

    Article  Google Scholar 

  • Ramírez-Herrera MT (1998) Geomorphic assessment of active tectonics in the acambay graben, Mexican volcanic belt. Earth Surf Proc Landf 23(4): 317–332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<317:AID-ESP845>3.0.CO;2-V

    Article  Google Scholar 

  • Regnoult JM (1986) Synthèse géologique du Cameroun. Direction des Mines et de la Géologie. Yaoundé, Cameroun. p 118.

  • Rouby D, Bonnet S, Guillocheau F, et al. (2009) Sediment supply to the orange sedimentary system over the Last 150 My: An evaluation from sedimentation/denudation balance. Mar Petrol Geol 26(6): 782–794. https://doi.org/10.1016/j.marpetgeo.2008.08.004

    Article  Google Scholar 

  • Ségalen P (1967) Les sols et la géomorphologie du Cameroun. Cahier ORSTOM, Sér Pédol 5: 137–187

    Google Scholar 

  • Selby MJ (1980) A rock mass strength classification for geomorphic purposes: with tests from Antartica and New Zealand. Z Geomorph 24(1): 31–51.

    Article  Google Scholar 

  • Silva PG, Goy JL, Zazo C, et al. (2003) Fault generated mountain fronts in Southeast Spain: geomorphologic assessment of tectonic and earthquake activity. Geomorphology 250: 203–226. https://doi.org/10.1016/S0169-555X(02)00215-5

    Article  Google Scholar 

  • Smith K (1950) Standard for grinding texture of erosional topography. Amer J Sci 248: 655–668. https://doi.org/10.2475/ajs.248.9.655

    Article  Google Scholar 

  • Sonker I, Tripathi NJ, Singh KI (2021) Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quat Sci Adv 4: 100039. https://doi.org/10.1016/j.qsa.2021.100039

    Article  Google Scholar 

  • Srivastava OS, Denis DM, Srivastava SK, et al. (2014) Morphometric analysis of a semi urban watershed, trans Yamuna, draining at Allahabad using cartosat (DEM) data and GIS. Inter J Eng Sci Technol 3 (11): 71–79.

    Google Scholar 

  • Strahler (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63: 1117–1142. https://doi.org/10.1130/0016-7606(1952)63%5B1117:HAAOET%5D2.0.CO;2

    Article  Google Scholar 

  • Tagne Kamga G, Mercier E, Rossy M, et al. (1999) Synkinematic emplacement of the Pan-African Ngondo igneous complex (west Cameroon, central Africa). J Afr Earth Sci 28: 675–691. https://doi.org/10.1016/S0899-5362(99)00038-X

    Article  Google Scholar 

  • Tcheumenak KJ, Njanko T, Kwékam M, et al. (2014) Kinematic evolution of the Fodjomekwet-Fotouni Shear Zone (West-Cameroon): Implications for emplacement of the Fomopéa and Bandja plutons. J Afr Earth Sci 99: 261–275. https://doi.org/10.1016/j.jafrearsci.2014.07.018

    Article  Google Scholar 

  • Tchoua F (1974) Contribution à l’étude géologique et pétrologique de quelques volcans de la «Ligne du Cameroun» (monts Manengouba et Bambouto). PhD Thesis, Univ. Clemont-Ferraud, France. p 337.

    Google Scholar 

  • Toteu SF, de Wit MJ, Penaye J, et al (2022) Geochronology and correlations in the Central African Fold Belt along the northern edge in the Congo Craton: New insights from U-Pb dating of zircons from Cameroon, Central African Republic, and south-western Chad. Gond Res 107(3–4): 296–324. https://doi.org/10.1016/j.gr.2022.03.010

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, et al. (1994) U-Pb and Sm-Nd evidencefor Eburnean and Panafrican high grade metamorphism in cratonic rocks of Southern Cameroon. Precamb Res 67: 321–347. https://doi.org/10.1016/0301-9268(94)90014-0

    Article  Google Scholar 

  • Toteu SF, Van Schumus WR, Penaye J, et al. (2001) New U-Pb and Sm-Nd data from north-central Cameroon and the pre-Pan African history of central Africa. Precamb Res 108: 45–73. https://doi.org/10.1016/S0301-9268(00)00149-2

    Article  Google Scholar 

  • Unternehr P, Curie D, Olivet JL, et al. (1988) South Atlantic fits and intraplate boundaries in Africa and South America. Tectonoph Space 155: 169–179. https://doi.org/10.1016/0040-1951(88)90264-8

    Article  Google Scholar 

  • Verrios S, Zygouri V, Kokkalas S (2004) Morphotectonic analysis in the Eliki fault zone (Gulf of Corinth, Greece). Bull Geol Soc Greece 36: 1706–1715. https://doi.org/10.12681/bgsg.16578

    Article  Google Scholar 

  • Whipple K, Wobus C, Crosby B, et al. (2007) New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream Profiles from Digital Topographic Data. Geol Soc Am Anl Meet, Course Notes. 1.

  • Wilson RC (1928) Notes on the Geology of the Mamfe Division, Cameroon Province. Occasional Paper, Geol Surv Nigeria. p 6.

Download references

Acknowledgements

The authors are grateful to the Government of Cameroon through its Ministry of Higher Education for providing Research Modernization Allowance that partially support field trips. Authors would also like to thank the Laboratory of Geosciences, Natural Resources and Environment of the University of Douala (Cameroon) for facilities, and the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Owona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wabo Defo, P.L., Owona, S., Nsangou Ngapna, M. et al. Post-orogenic transients and relict landforms of the Bafoussam - Mamfe region (West-Cameroon Highland margin). J. Mt. Sci. 19, 2180–2201 (2022). https://doi.org/10.1007/s11629-021-7180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-021-7180-x

Keywords

Navigation