Skip to main content

Two-tiered reconstruction of Late Pleistocene to Holocene changes in the freezing level height in the largest glacierized areas of the Colombian Andes

Abstract

One way of deducing vertical shifts in the altitudinal distribution of Colombian high-altitude páramo environments is by inferring fluctuations in the height of the local freezing level. In our research, we are implementing two complementary approaches to reconstruct Late Pleistocene to Holocene changes in the freezing level height (FLH) in two of the most extensively glacier-covered areas of the northern Andes. We combined remote sensing and field-based geomorphological mapping with time-series reconstruction of changes in the altitude of the 0°C isotherm. Changes in the FLH were based on already-published ∼30 kyr paleo-reconstructions of sea surface temperatures (SSTs) of the eastern tropical Pacific and the western tropical Atlantic, as well as on reconstructed long-term sea level changes and empirical orthogonal functions of present-day (historical) Indo-Pacific and tropical Atlantic SST anomalies. We also analyzed the probability distribution of air-sea temperature differences and the spatial distribution of grid points with SSTs above the minimum threshold necessary to initiate deep convection. We considered available historical near-surface and free air temperature data of ERA-Interim reanalysis products, General Circulation Model (GCM) simulations, weather stations, and (deployed by our group) digital sensors, to assess the normal Environmental Lapse Rates (ELRs) at the regional to local scale. The combined maps of glacial landforms and our reconstructed FLHs provided us with a well-founded inference of potential past glacier advances, narrowing down the coarse resolution of ice margins suggested by previous research efforts. The extent of the areas with temperatures below the freezing point suggested here for the summits of our main study site exceeds in magnitude the corresponding glacier icecaps and front advances proposed by previous studies. Conversely, our average lowest altitudes of the FLH for our comparative site are consistently above the main glacier-front advances previously suggested. Our results indicate that, compared to the maximum upward changes that likely took place over the past ca. observed (present-day) upward shifts of the FLH have occurred at a rate that significantly surpasses our inferred rates. Our study helps fill the gaps in understanding past climatic changes and present trends in the region of interest and provides some insights into analyzing the signals of natural and anthropogenic climate change.

This is a preview of subscription content, access via your institution.

References

  • Bakker JGM, Salomons JB (1989) A palaeoecological record of a volcanic soil sequence in the Nevado del Ruiz area, Colombia. Rev Palaeobot Palyno 60: 149–163. https://doi.org/10.1016/0034-6667(89)90074-2

    Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation. 2nd edition, Routledge, London: Hodder Education. 802 (2010). https://doi.org/10.4324/9780203785010

    Google Scholar 

  • Bottomley M, Folland CK, Hsiung J (1990) Global Ocean Surface Temperature Atlas. Met. Office.

  • Bova SC, Herbert T, Rosenthal Y, et al. (2015) Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. Paleoceanography 30:1407–1424. https://doi.org/10.1002/2015PA002816

    Google Scholar 

  • Bradley RS, Keimig FT, Díaz HF (2004) Projected temperature change along the American cordillera and the planned GCOS network. Geophys Res Lett 31: L16210. https://doi.org/10.1029/2004GL020229

    Google Scholar 

  • Bradley RS, Keimig FT, Díaz HF, et al. (2009) Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36: L17701. https://doi.org/10.1029/2009GL037712

    Google Scholar 

  • Bradley RS, Vuille M, Díaz HF, et al. (2006) Threats to water supplies in the tropical Andes. Science 312(5781): 1755–1756. https://doi.org/10.1126/science.1128087

    Google Scholar 

  • Braitmeyer M (2003) The surface energy balance of Santa Isabel Nevado, Colombia. PhD thesis. Dusseldorf University. (In German)

  • Bromley G, Ruiz D, Restrepo-Moreno SA (2013) Reconstructing Late Quaternary tropical glacier change in the Colombian Andes through surface-exposure dating. Memorias del XIV Congreso Colombiano de Geología, Bogotá, Colombia. ISBN 978-958-57950-0-6.

  • Bush MB, Colinvaux PA, Weimann MC, et al. (1990) Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Res 34: 330–345. https://doi.org/10.1016/0033-5894(90)90045-M

    Google Scholar 

  • Clapperton CM (1993) Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeogr Palaeocl 101: 189–208. https://doi.org/10.1016/0031-0182(93)90012-8

    Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, et al. (2009). The Last Glacial Maximum. Science 325: 710–714. https://doi.org/10.1126/science.1172873

    Google Scholar 

  • Cleef AM (1979) The phytogeographical position in the neotropical vascular páramo flora with special reference to the Colombian Cordillera Oriental. Tropical Botany. Academic Press Inc., London. pp 175–184.

    Google Scholar 

  • Cleef AM, Noldus GW, van der Hammen T (1995) Palynological study of the Middle Pleniglacial in the Otono river — Manizales Enea cross section, (Central Cordillera, Colombia). In: van der Hammen T, dos Santos AG (eds.), Studies on Tropical Andean Ecosystems. (In Spanish)

  • Dansgaard W, Johnsen SJ, Clausen HB, et al. (1993) Evidence for general instability of past climate from a 250-ka ice-core record. Nature 364: 218–220. https://doi.org/10.1038/364218a0

    Google Scholar 

  • Dyez KA, Ravelo AC, Mix AC (2016) Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature. Paleoceanography 31(8): 1054–1069. https://doi.org/10.1002/2015PA002873

    Google Scholar 

  • Flórez A (1992a) Remaining glaciers in Colombia: geo-historical approach and current situation. Zenit 3: 35–45. (In Spanish)

    Google Scholar 

  • Flórez A (1992b) Colombian nevados: glaciers and glaciations. Geographical Analyses 22. Agustin Codazzi Geographical Institute- IGAC, Bogota. (In Spanish)

  • Francou B, Vuille M, Favier V, et al. (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J Geophys Res: Atmospheres 109. https://doi.org/10.1029/2003JD004484

  • Greenland Ice-core Project (GRIP) Members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364: 203–207. https://doi.org/10.1038/364203a0

    Google Scholar 

  • Harris GN, Bowman KP, Shin DB (2000) Comparison of freezing-level altitudes from the NCEP reanalysis with TRMM precipitation radar brightband data. J Clim 13: 4137–4148. https://doi.org/10.1175/1520-0442(2000)013%3C4137:COFLAF%3E2.0.CO;2

    Google Scholar 

  • Hastings DA, Dunbar PK (1999) Global land one-kilometer base elevation (GLOBE) digital elevation model, Documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, USA.

    Google Scholar 

  • Herd DG (1982) Glacial and volcanic geology of the Ruiz-Tolima volcanic complex, Cordillera Central, Colombia. Ingeominas Special Geological Publications, Bogota, Colombia. 8: 1–48. (In Spanish)

    Google Scholar 

  • Hooghiemstra H (1984) Vegetational and climatic history of the high plain of Bogotá, Colombia: a continuous record of 3.5 million years. Dissertationes Botanicae, Vol. 79.

  • Hooghiemstra H, van der Hammen T (2004) Quaternary ice-age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos T Roy Soc B 359:173–181. https://doi.org/10.1098/rstb.2003.1420

    Google Scholar 

  • Institute for Hydrology, Meteorology and Environmental Studies — IDEAM (2018) Report of the state of Colombian glaciers. Bogota, Colombia. p 36. (In Spanish)]

  • Jomelli V, Favier V, Vuille M, et al. (2014) A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513: 224–228. https://doi.org/10.1038/nature13546

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, et al. (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329(6138): 403–408. https://doi.org/10.1038/329403a0

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, et al. (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteor Soc 83: 1631–1643.

    Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, et al. (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(18): 567–589. https://doi.org/10.1029/97JC01736

    Google Scholar 

  • Kaser G (2001) Glacier-climate interaction at low latitudes. J Glaciol 47: 195–204. https://doi.org/10.3189/172756501781832296

    Google Scholar 

  • Kaser G, Juen I, Georges C, et al. (2003) The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J Hydrol 282: 130–144. https://doi.org/10.1016/S0022-1694(03)00259-2

    Google Scholar 

  • Kaser G, Osmaston HA (2002) Tropical glaciers. Cambridge University Press, New York. p 209.

    Google Scholar 

  • Kaser G, Georges Ch (1999) On the mass balance of low latitude glaciers with particular consideration of the Peruvian Cordillera Blanca. Geogr Ann A 81(4): 643–651. https://doi.org/10.1111/1468-0459.00092

    Google Scholar 

  • Kaufman D, McKay N, Routson C, et al. (2020) Holocene global mean surface temperature, a multi-method reconstruction approach. Sci Data 7: 201. https://doi.org/10.1038/s41597-020-0530-7

    Google Scholar 

  • Kienast M, Kienast SS, Calvert SE, et al. (2006) Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443(7113): 846–849. https://doi.org/10.1038/nature05222

    Google Scholar 

  • Klein AG, Seltzer GO, Isacks BL (1999) Modern and last Local Glacial Maximum snowlines in the central Andes of Peru, Bolivia and Northern Chile. Quaternary Sci Rev 18: 65–86. https://doi.org/10.1016/S0277-3791(98)00095-X

    Google Scholar 

  • Kuhry P, Salomons JB, Riezebos PA, et al. (1983) Palaeoecology of the last 6,000 years in the surroundings of the Lagoon of the Otun-El Bosque. In: van der Hammen T, Pérez PA, Pinto P (eds.), Studies on Tropical Andean Ecosystems. Volume 1. Cramer (Borntraeger), Berlin/Stuttgart, Germany. pp 227–261. (In Spanish)

  • Lea DW, Pak DK, Spero HJ (2000) Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1724. https://doi.org/10.1126/science.289.5485.1719

    Google Scholar 

  • Lea DW, Martin PA, Pak DK, et al. (2002) Reconstructing a 350 kyr history of sea level using planktonic Mg/Ca and oxygen isotopic records from a Cocos Ridge core. Quat Sci Rev 21(1–3): 283–293. https://doi.org/10.1016/S0277-3791(01)00081-6

    Google Scholar 

  • Lea DW, Pak DK, Peterson LC, et al. (2003) Synchroneity of tropical and high-latitude Atlantic temperatures over the Last Glacial Termination. Science 301: 1361–1364. https://doi.org/10.1126/science.1088470

    Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994. Volume 4: Temperature, Number 4.

  • López-Arenas CD, Ramírez-Cadena J (ed.) (2010) Glaciers, Snow and Ice of Latin America — Climate Change and Hazards. Collection Glaciers, Nevados and Environment, Colombian Institute of Geology and Mining — INGEOMINAS, Ministry of Mines and Energy, Republic of Colombia. p 343. (In Spanish)

  • Marcott SA, Shakun JD, Clark PU, et al. (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339: 1198–1201. https://doi.org/10.1126/science.1228026

    Google Scholar 

  • Mölg N, Ceballos JL, Huggel Ch, et al. (2017) Ten years of monthly mass balance of Conejeras glacier, Colombia, and their evaluation using different interpolation methods. Geogr Ann A 99(2): 155–176. https://doi.org/10.1080/04353676.2017.1297678

    Google Scholar 

  • Palacios D, Stokes Ch.R, Phillips FM, et al. (2020) The deglaciation of the Americas during the Last Glacial Termination. Earth-Sci Rev 203: 103113. https://doi.org/10.1016/j.earscirev.2020.103113

    Google Scholar 

  • Parker DE, Jones PD, Folland CK, et al. (1994) Interdecadal changes of surface temperature since the late nineteenth century. J Geophys Res 99(14): 373–399. https://doi.org/10.1029/94JD00548

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, et al. (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5: 424–430. https://doi.org/10.1038/nclimate2563

    Google Scholar 

  • Petit JR, Mourner L, Jouzel J, et al. (1990) Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 343: 56–58. https://doi.org/10.1038/343056a0

    Google Scholar 

  • Qixiang W, Wang M, Fan X (2018) Seasonal patterns of warming amplification of high-elevation stations across the globe. Int J Climatol 38: 3466–3473. https://doi.org/10.1002/joc.5509

    Google Scholar 

  • Rabatel A, Francou B, Soruco A, et al. (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7: 81–102. https://doi.org/10.5194/tc-7-81-2013

    Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351: 27–32. https://doi.org/10.1038/351027a0

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14): 4407. https://doi.org/10.1029/2002JD002670

    Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Climate 7: 929–948. https://doi.org/10.1175/1520-0442(1994)007%3C0929:IGSSTA%3E2.0.CO;2

    Google Scholar 

  • Rodbell DT, Smith JA, Mark BG (2009) Glaciation in the Andes during the Lateglacial and Holocene. Quaternary Sci Rev 28(21–22): 2165–2212. ISSN 0277-3791. https://doi.org/10.1016/j.quascirev.2009.03.012

    Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, et al. (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max-Planck-Institut fur Meteorologie Rep. 218, Hamburg, Germany. p 90.

  • Ruiz D, Arroyave MP, Gutiérrez ME, et al. (2011) Increased climatic stress on high-Andean ecosystems in the Cordillera Central of Colombia. pp. 182–191. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds.), Climate Change and Biodiversity in the Tropical Andes. MacArthur Foundation, Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), São José dos Campos and Paris. p 348. ISBN: 978-85-99875-05-6.

  • Ruiz-Carrascal D (2016) Poleka Kasue Mountain Observatory, Los Nevados Natural Park, Colombia. Joint Issue Mountain Views/Mountain Meridian, Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) and Mountain Research Initiative (MRI), Vol 10, Number 2, December 2016. pp 17–20.

  • Sagredo E, Lowell T (2012) Climatology of Andean glaciers: a framework to understand glacier response to climate change. Global Planet Change 86–87: 101–109. https://doi.org/10.1016/j.gloplacha.2012.02.010

    Google Scholar 

  • Sagredo E, Rupper S, Lowell T (2014) Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quaternary Res 81(2): 355–366. https://doi.org/10.1016/j.yqres.2014.01.008

    Google Scholar 

  • Salomons JB (1986) Paleoecology of volcanic soils in the Colombian Central Cordillera (Parque Nacional Natural de Los Nevados). Ph.D. thesis. University of Amsterdam, Netherlands. The Quaternary of Colombia. p 13.

    Google Scholar 

  • Schauwecker S, Rohrer M, Acuna D, et al. (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob Planet Chang 119: 85–97. https://doi.org/10.1016/j.gloplacha.2014.05.005

    Google Scholar 

  • Schauwecker S, Rohrer M, Huggel C, et al. (2017) The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents. Geophys Res Atmospheres 122: 5172–5189. https://doi.org/10.1002/2016JD025943

    Google Scholar 

  • Shakun JD, Clark PU, He F, et al. (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484: 49–54. https://doi.org/10.1038/nature10915

    Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST [1854–1997]. J Climate 17: 2466–2477. https://doi.org/10.1175/1520-0442(2004)017%3C2466:IEROS%3E2.O.CO;2

    Google Scholar 

  • Thompson LG, Davis M, Mosley-Thompson E, et al. (1988) Pre-Incan agricultural activity recorded in dust layers in two tropical ice cores. Nature 336: 763–765. https://doi.org/10.1038/336763a0

    Google Scholar 

  • Thompson LG, Davis ME, Mosley-Thompson E, et al. (1998) A 25,000-year tropical climate history from Bolivian ice cores. Science 282: 1858–1864. https://doi.org/10.1126/science.282.5395.1858

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Morales-Arnao BM (1984) Major El Niño-Southern Oscillation events recorded in stratigraphy of the tropical Quelccaya ice cap. Science 226: 50–52. https://doi.org/10.1126/science.226.4670.50

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Bolzan JF, et al. (1985) A 1,500 year record of tropical precipitation recorded in ice cores from the Quelccaya ice cap, Peru. Science 229: 971–973. https://doi.org/10.1126/science.229.4717.971

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Dansgaard W, et al. (1986) The ‘Little Ice Age’ as recorded in the stratigraphy of the tropical Quelccaya ice cap. Science 234: 361–364. https://doi.org/10.1126/science.234.4774.361

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, et al. (1995) Late Glacial Stage and Holocene tropical ice core records from Huascarán, Peru. Science 269: 46–50. https://doi.org/10.1126/science.269.5220.46

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. J Quaternary Sci 15: 377–394. https://doi.org/10.1002/1099-1417(200005)15:4%3C377::AID-JQS542%3E3.0.CO;2-L

    Google Scholar 

  • Thouret JC, van der Hammen T, Salomons B (1996) Palaeoenvironmental changes and glacial stades of the last 50,000 years in the Cordillera Central, Colombia. Quaternary Res 46: 1–18. https://doi.org/10.1006/qres.1996.0039

    Google Scholar 

  • Thouret JC, van der Hammen T, Salomons B, et al. (1997). Late Quaternary glacial stages in the Cordillera Central, Colombia, based on glacial geomorphology, tephra-soil stratigraphy, palynology, and radiocarbon dating. J Quaternary Sci 12(5): 347–369. https://doi.org/10.1002/(SICI)1099-1417(199709/10)12:5%3C347::AID-JQS319%3E3.0.CO;2-%23

    Google Scholar 

  • Torres V, Hooghiemstra H, Lourens L, et al. (2013) Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the Quaternary. Quaternary Sci Rev 63: 59–72. https://doi.org/10.1016/j.quascirev.2012.11.004

    Google Scholar 

  • van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1: 3–26. https://doi.org/10.2307/3038066

    Google Scholar 

  • van der Hammen T, Barelds J, De Jong H, et al. (1980/1981) Glacial sequence and environmental history in the Sierra Nevada del Cocuy (Colombia). Palaeogeogr Palaeocl 32: 247–340. https://doi.org/10.1016/0031-0182(80)90043-7

    Google Scholar 

  • van der Hammen T (1989) La Cordillera Central Colombiana — Transecto Parque de Los Nevados. Berlín: Stuttgart.

    Google Scholar 

  • Velasquez FH (1998) The Little Ice Age in the Ruiz and Santa Isabel Nevados. Undergraduate thesis. Medellin: National University of Colombia, Department of Geological Engineering. (In Spanish)

    Google Scholar 

  • Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27: 3885–3888. https://doi.org/10.1029/2000GL011871

    Google Scholar 

  • Vuille M, Carey M, Huggel Ch, et al. (2018) Rapid decline of snow and ice in the tropical Andes — Impacts, uncertainties and challenges ahead. Earth-Sci Rev 176: 195–213. https://doi.org/10.1016/j.earscirev.2017.09.019

    Google Scholar 

  • Vuille M, Francou B, Wagnon P, et al. (2008) Climate change and tropical Andean glaciers — past, present and future. Earth Sci Rev 89: 79–96. https://doi.org/10.1016/j.earscirev.2008.04.002

    Google Scholar 

  • Vuille M, Franquist E, Garreaud R, et al. (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res 120(9): 3745–3757. https://doi.org/10.1002/2015JD023126

    Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, et al. (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci Rev 21(1–3): 295–305. https://doi.org/10.1016/S0277-3791(01)00101-9

    Google Scholar 

  • Wang Q, Fan X, Wang M (2016) Evidence of high-elevation amplification versus Arctic amplification. Sci Rep 6: 19219. https://doi.org/10.1038/srep19219

    Google Scholar 

  • Williams Jr. RS, Ferrigno JG (1999) Satellite image atlas of glaciers of the world. U.S. Geological Survey Professional Paper 1386-I. United States Government Printing Office, Washington D.C..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ruiz-Carrascal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Carrascal, D., González-Duque, D. & Restrepo-Correa, I. Two-tiered reconstruction of Late Pleistocene to Holocene changes in the freezing level height in the largest glacierized areas of the Colombian Andes. J. Mt. Sci. 19, 615–636 (2022). https://doi.org/10.1007/s11629-021-6783-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-021-6783-6

Keywords

  • Glacial events
  • Colombian Andes
  • Climate reconstruction
  • Geomorphology
  • Mountain glaciers
  • Freezing level height