Skip to main content
Log in

Using thermal remote sensing in the classification of mountain permafrost landscapes

  • Original Article
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Thermal infrared satellite imagery is increasingly utilized in permafrost studies. One useful application of the land surface temperature (LST) products is classification and mapping of landscapes in permafrost regions, as LST values can help differentiate between frozen and unfrozen ground. This article describes a new approach to the use of LST. The essence of the new approach lies in the fact that in the territory where it is impossible to determine (indicate) the state of the underlying ground according to the same morphological characteristics (relief, vegetation, soil composition, etc.), the LST parameter, which reflects the thermal state of the landscape, allows as an additional criterion (indicator) identify frozen/un-frozen landscapes. In this work, using the above approach, a map has been compiled, which shows the permafrost natural-territorial complexes of the Elkon Massif, Eastern Siberia, including topography, slope aspect, slope angle, vegetation, snow cover and LST. The map provides a more detailed and updated description of permafrost distribution in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Marchenko S, Hachem S, Romanovsky V, Duguay C (2009) Permafrost and active layer modelling in the Northern Eurasia using MODIS Land Surface Temperature as an input data. In: Proceedings of European Geosciences Union General Assembly, Vienna. Vol. 11, p.11077.

  • Nelson F, Outcalt S (1987) A computational method for prediction and regionalization of permafrost. Arct Alp Res 193: 279–288. https://doi.org/10.1080/00040851.1987.12002602

    Article  Google Scholar 

  • Hachem S (2009) Using the MODIS Land Surface Temperature Product for Mapping Permafrost: An Application to Northern Quebec and Labrador, Canada. Permafrost Periglacial Process 20: 407–416. https://doi.org/10.1002/ppp.672

    Article  Google Scholar 

  • Greene J (1971) The application of infrared remote sensing techniques to permafrost — related engineering problems. In: Second Int. symposium on arctic geology (abstr.), San-Francisco. pp 59–61.

  • Greene J (1972) Application of infrared remote sensing methods to geological and engineering problems of the Arctic. In: 4th Ann. earth resource program rev. Houston, Texas, NASA, MSC. pp 36 (58–1).

  • Leshack L, Morse F, Brinley W, et al. (1972) Dual-channel airborne I-R scanning for detection of ice in permafrost (Alaska preliminary results). Am Soc Photogr Proc 38: 213–238.

    Google Scholar 

  • Leshack L, Morse F (1973) Potential use of airborne dual-channel infrared scanning to detect massive ice in permafrost. North American Contribution Permafrost Second Int. Conf., Washington, D.C. pp 542–549.

  • Kudryavtsev VA, Garagulya LS, Kondratyeva KA, et al. (1979) Permafrost survey methods. Moscow, Russia: Moscow State University. p 358. (In Russian)

    Google Scholar 

  • Nekrasov IA (1979) Prospects for the aerospace methods use in geocryology. Aerospace Research of the Earth. M.: Nauka. pp 224–234. (In Russian)

    Google Scholar 

  • Garbuk SV, Gershenzon VE (1997) Space systems for Earth remote sensing. M.: Publisher A and B. p 296. (In Russian)

    Google Scholar 

  • Abrams M, Hook S, Ramachandran B (1999) Aster User Handbook, Version 2, NASA/Jet Propulsion Laboratory, Pasadena.

    Google Scholar 

  • Ihlen V, Zanter K (2019) Landsat 7 (L7) Data Users Handbook, Version 2.0, EROS Sioux Falls, South Dakota.

    Google Scholar 

  • Kravtsova VI, Baldina EA, Fedorkova YV (2012) The use of satellite images in the thermal infrared range for geographical research (CD-ROM). M.: Moscow State University named after M.V. Lomonosov. (In Russian)

    Google Scholar 

  • Langer M, Westermann S, Boike J (2010) Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia — implications for MODIS LST based permafrost monitoring. Remote Sens Environ 114: 2059–2069. https://doi.org/10.1016/j.rse.2010.04.012

    Article  Google Scholar 

  • Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115: 908–922. https://doi.org/10.1016/j.rse.2010.11.018

    Article  Google Scholar 

  • Hachem S, Allard M, Duguay C (2008) A new permafrost map of Quebec-Labrador derived from near-surface temperature data of the Moderate Resolution Imaging Spectroradiometer (MODIS). In: Proceedings of the Ninth International Conference on Permafrost, University of Fairbanks, Fairbanks. pp 591–596.

    Google Scholar 

  • Hachem S, Duguay C, Allard M (2012) Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain. The Cryosphere 6: 51–69. https://doi.org/10.5194/tc-6-51-2012

    Article  Google Scholar 

  • Ran Y, Li X, Jin R, Guo J (2015) Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China. Arct Antarc Alp Res 47(2): 255–265. https://doi.org/10.1657/AAAR00C-13-306

    Article  Google Scholar 

  • Westermann S, Ostby T, Gisnås K, et al. (2015) A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. Cryosphere 9: 1303–1319. https://doi.org/10.5194/tc-9-1303-2015

    Article  Google Scholar 

  • Gisnås K, Etzelmüller B, Farbrot H, et al. (2013) CryoGRID 1.0: Permafrost distribution in Norway estimated by a spatial numerical model. Permafrost Periglacial Process 24: 2–19. https://doi.org/10.1002/ppp.1765

    Article  Google Scholar 

  • Zhao S, Nan Z, Huang Y, Zhao L (2017) The Application and Evaluation of Simple Permafrost Distribution Models on the Qinghai-Tibet Plateau. Permafrost Periglacial Process 2: 391–404. https://doi.org/10.1002/ppp.1939

    Article  Google Scholar 

  • Shi Y, Niu F, Yang C, et al. (2018) Permafrost Presence/Absence Mapping of the Qinghai-Tibet Plateau Based on Multi-Source Remote Sensing Data. Remote Sens 10(2): 309. https://doi.org/10.3390/rs10020309

    Article  Google Scholar 

  • Kornienko SG (2007) Features of using the thermal method for studying and monitoring frozen ground. Drilling and Oil 7–8: 72–75. (In Russian)

    Google Scholar 

  • Kornienko SG (2012) Methodology for assessing the ice content of frozen ground based on remote sensing data in the visible and infrared range. Exploration of the Earth from Space 5: 75–84. (In Russian)

    Google Scholar 

  • Medvedkov AA (2016) Cryogenic landscapes mapping based on the analysis of thermal images. Materials of the International Conference “InterCarto/InterGIS; M., Scientific Library. Vol. 1, pp 380–384.

    Article  Google Scholar 

  • Kalinicheva SV, Fedorov AN, Zhelezniak MN (2019) Mapping mountain permafrost landscapes in Siberia using Landsat thermal imagery. Geosciences 9(1): 4. https://doi.org/10.3390/geosciences9010004

    Article  Google Scholar 

  • Makarov VS (2017) Spatial distribution of surface radiation temperature in the area of the “Pole of Cold”. Questions of the geography of Yakutia. Issue 12: Natural and climatic conditions of North-Eastern Yakutia, Novosibirsk, Science. pp 45–48. (In Russian)

  • Luo D, Jin H, Marchenko S, Romanovsky V (2018) Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 312: 74–85. https://doi.org/10.1016/j.geoderma.2017.09.037

    Article  Google Scholar 

  • Li A, Xia C, Bao C, Yin G (2019) Using MODIS Land surface temperatures for permafrost thermal modeling in Beiluhe Basin on the Qinghai-Tibet Plateau. Sensors 19(19): 4200. https://doi.org/10.3390/s19194200

    Article  Google Scholar 

  • Smith M, Riseborough D (2002) Climate and the limit of permafrost: a zonal analysis. Permafrost and Periglacial Processes 13: 1–15. https://doi.org/10.1002/ppp.410

    Article  Google Scholar 

  • Sazonova TA, Romanovsky V (2003) A model for regional-scale estimation of temporal and spatial variability of active-layer thickness and mean annual ground temperatures. Permafrost Periglacial Process 14(2): 125–140. https://doi.org/10.1002/ppp.449

    Article  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, et al. (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40: 1219–1236. https://doi.org/10.1139/X10-060

    Article  Google Scholar 

  • Jorgenson MT, Frost GV, Dissing D (2018) Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens 10: 1280. https://doi.org/10.3390/rs10081280

    Article  Google Scholar 

  • Kokelj SV, Trevor C, Lantz TC, et al. (2017) Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45: 371–374. https://doi.org/10.130/G38626.1

    Article  Google Scholar 

  • Wang T, Wu T, Wang P, et al. (2019) Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Sci. Total Environ 650: 661–670. https://doi.org/10.1016/j.scitotenv.2018.08.398

    Article  Google Scholar 

  • Fedorov AN (1991) Permafrost Landscapes of Yakutia. Classification and Mapping Issues. Yakutsk, Russia: Permafrost Institute. p 140. (In Russian)

    Google Scholar 

  • Fedorov AN, Vasilyev NF, Torgovkin YI, et al. (2018) Permafrost-landscape map of the Republic of Sakha (Yakutia) on a Scale 1:1,500,000. Geosciences 8(12): 465. https://doi.org/10.3390/geosciences8120465

    Article  Google Scholar 

  • Sochava VB (1978) Introduction to the doctrine of geosystems. Novosibirsk: Nauka. p 318. (In Russian)

    Google Scholar 

  • Wang ZW, Wang Q, Zhao L, et al. (2016) Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J Mt Sci 13: 1035–1046. https://doi.org/10.1007/s11629-015-3485-y

    Article  Google Scholar 

  • Zou D, Zhao L, Sheng Y, et al. (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11: 2527–2542. https://doi.org/10.5194/tc-11-2527-2017

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to A.N. Fedorov for help and advice on the classification of permafrost landscapes, to M. N. Zheleznyak and A.R. Kirillin for providing in-situ data on ground temperature and snow cover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Kalinicheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinicheva, S.V., Shestakova, A.A. Using thermal remote sensing in the classification of mountain permafrost landscapes. J. Mt. Sci. 18, 635–645 (2021). https://doi.org/10.1007/s11629-020-6475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-020-6475-7

Keywords

Navigation