Skip to main content

Spatiotemporal patterns of burned areas, fire drivers, and fire probability across the equatorial Andes

Abstract

Field-based fire studies in the equatorial Andes indicate that fires are strongly associated with biophysical and anthropogenic variables. However, fire controls and fire regimes at the regional scale remain undocumented. Therefore, this paper describes spatial and temporal burned-area patterns, identifies biophysical and anthropogenic fire drivers, and quantifies fire probability across 6° of latitude and 3° of longitude in the equatorial Andes. The spatial and temporal burned-area analysis was carried out based on 18 years (2001–2018) of the MCD64A1 MODIS burned-area product. Climate, topography, vegetation, and anthropogenic variables were integrated in a logistic regression model to identify the significance of explanatory variables and determine fire occurrence probability. A total of 5779 fire events were registered during the 18 years of this study, located primarily along the western cordillera of the Andes and spreading from North to South. Eighty-eight percent of these fires took place within two fire hotspots located in the northwestern and southwestern corners of the study area. Ninety-nine percent occurred during the second part of the year, between June and December. The largest density of fires was primarily located on herbaceous vegetation and shrublands. Results show that mean monthly temperature, precipitation and NDVI during the pre-fire season, the location of land cover classes such as forest and agriculture, distance to roads and urban areas, slope, and aspect were the most important determinants of spatial and temporal fire distribution. The logistic regression model achieved a good accuracy in predicting fire probability (80%). Probability was higher in the southwestern and northern corners of the study area, and lower towards the north in the western and eastern piedmonts of the Andes. This analysis contributes to the understanding of fires in mountains within the tropics. The results here presented have the potential to contribute to fire management and control in the region.

This is a preview of subscription content, access via your institution.

References

  1. Acosta-Solis M (1959) The need to protect nature and natural resources conservation. Some suggestions to this end. In V Pan American meeting of consultation on geography IPGH, Quito, Ecuador. p 15. (In Spanish)

    Google Scholar 

  2. Acosta-Solis M (1973) The landscape and vegetation cover of the Kingdom of Quito upon the arrival of the Conquerors. In Ecuador Scientific Information Bulletin. Ecuadorian Institute of Natural Sciences. Vol. XIV No. 105–106. Quito, Ecuador. pp 11–29. (In Spanish)

    Google Scholar 

  3. Adeney JM, Christensen NL, Pimm SL (2009). Reserves Protect against Deforestation Fires in the Amazon. PLoS ONE 4(4) e5014. https://doi.org/10.1371/journal.pone.0005014

  4. Aguilar J, Suárez R (2013) Identification of vulnerable areas to forest fires applying a probability model and its subsequent potential prediction with the cellular automata methodology in the metropolitan district of Quito. Undergraduate Thesis, University of the Armed Forces (ESPE), Quito, Ecuador. p 192. (In Spanish)

    Google Scholar 

  5. Aide TM, Grau HR, Graesser J, et al. (2019) Woody Vegetation Dynamics in the Tropical and Subtropical Andes from 2001 to 2014: Satellite Image Interpretation and Expert Validation. Global Change Biol 25(6): 2112–26. https://doi.org/10.1111/gcb.14618

    Article  Google Scholar 

  6. Álvarez-Rodríguez J, Llasat M, Estrela T (2017) Analysis of Geographic and Orographic Influence in Spanish Monthly Precipitation. Int J Climatol 37: 350–62. https://doi.org/10.1002/joc.5007

    Article  Google Scholar 

  7. Andreae MO (1991) Biomass Burning — Its History, Use, and Distribution and Its Impact on Environmental Quality and Global Climate. United States: MIT Press. p 21.

    Google Scholar 

  8. Archibald S, Roy D, Van Wilgen B, et al. (2009) What Limits Fire. An Examination of Drivers of Burnt Area in Southern Africa. Global Change Biol 15(3): 613–30. https://doi.org/10.1111/j.1365-2486.2008.01754.x

    Article  Google Scholar 

  9. Argañaraz JP, Pizarro GG, Zak M, et al. (2015) Human and Biophysical Drivers of Fires in Semiarid Chaco Mountains of Central Argentina. Sci Total Environ 520(1): 1–12. https://doi.org/10.1016/j.scitotenv.2015.02.081

    Article  Google Scholar 

  10. Arima, EY, Simmons, CS, Walker, RT, et al. (2007) Fire in the brazilian amazon: a spatially explicit model for policy impact analysis. J Regional Sci, 47(3), 541–567. https://doi.org/10.1111/j.1467-9787.2007.00519.x

    Article  Google Scholar 

  11. Borrelli P, Armenteras D, Panagos P, et al. (2015) The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sens 7(9): 11061–82. https://doi.org/10.3390/rs70911061

    Article  Google Scholar 

  12. Boschetti L, Brivio PA, Eva HD, et al. (2006) A Sampling Method for the Retrospective Validation of Global Burned Area Products. IEEE Trans Geosci Remote Sens 44(7): 1765–73. https://doi.org/10.1109/TGRS.2006.874039

    Article  Google Scholar 

  13. Bruce P, Bruce A, Gedeck P (2020) Practical Statistics for Data Scientists.50+ Essential Concepts Using R and Python. 2nd ed. ed. O’Reilly Press. Sebastopol CA, USA. pp 363.

    Google Scholar 

  14. Buytaert W, De Bièvre B (2012) Water for Cities: The Impact of Climate Change and Demographic Growth in the Tropical Andes. Water Resour Res 48(8). https://doi.org/10.1029/2011WR011755

  15. Carmenta R, Parry L, Blackburn A, et al. (2011) Understanding human-fire interactions in tropical forest regions: a case for interdisciplinary research across the natural and social sciences. Ecol Soc 16(1): 53. https://doi.org/10.5751/ES-03950-160153

    Article  Google Scholar 

  16. Catry FX, Rego FC, Bação FL, et al. (2009) Modeling and Mapping Wildfire Ignition Risk in Portugal. Int J Wildland Fire 18(8): 921–31. https://doi.org/10.1071/WF07123

    Article  Google Scholar 

  17. Cochrane MA (2001) Synergistic Interactions between Habitat Fragmentation and Fire in Evergreen Tropical Forests. Conserv Biol, 15(6), 1515–1521. https://doi.org/10.1046/j.1523-1739.2001.01091.x

    Article  Google Scholar 

  18. Cochrane MA (2003) Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437

    Article  Google Scholar 

  19. Cochrane MA (2009) Fire in the tropics. In Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics. Praxis Publishing. Chichester, UK. pp 645.

    Chapter  Google Scholar 

  20. Cuesta F, Muriel P, LLambi L, et al. (2017) Latitutinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40: 1381–1394. https://doi.org/10.1111/ecog.02567

    Article  Google Scholar 

  21. Di Bella C, Jobbágy E, Paruelo J, et al. (2006) Continental Fire Density Patterns in South America. Global Ecol Biogeogr 15(2): 192–99. https://doi.org/10.1111/j.1466-822X.2006.00225.x

    Article  Google Scholar 

  22. Didan K, Barreto Munoz A, Solano R et al. (2015) MODIS Vegetation Index User’s Guide (MOD13 Series). The University of Arizona. pp 32.

  23. Estacio J, Narváez N (2012) Forest fires in the Metropolitan District of Quito (DMQ) awareness and public intervention of risk. Green Letters Magazine No. 11. Quito. (In Spanish)

  24. Fornacca D, Ren G, Xiao W (2017) Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens 9(11): 1131. https://doi.org/10.3390/rs9111131

    Article  Google Scholar 

  25. Fox J, Weisberg S (2019) An R Companion to Applied Regression, SAGE Publications. Third Edition. Thousand Oaks, CA, USA. pp 608.

    Google Scholar 

  26. Funk C, Peterson P, Landsfeld M, et al. (2014) A Quasi-Global Precipitation Time Series for Drought Monitoring: U.S. Geological Survey Data Series (832): 4 p. https://doi.org/10.3133/ds832

  27. Funk C, Peterson P, Landsfeld M, et al. (2015) The Climate Hazards Infrared Precipitation with Stations-a New Environmental Record for Monitoring Extremes. Sci Data 2, 150066. https://doi.org/10.1038/sdata.2015.66

  28. Fusco EJ, Abatzoglou JT, Balch JK, et al. (2016) Quantifying the Human Influence on Fire Ignition across the Western USA. Ecol Appl 26(8): 2390–2401. https://doi.org/10.1002/eap.1395

    Article  Google Scholar 

  29. Fushiki T (2011) Estimation of Prediction Error by Using K-Fold Cross-Validation. Statistics and Computing 21(2): 137–46. https://doi.org/10.1007/s11222-009-9153-8

    Article  Google Scholar 

  30. Giglio L, Boschetti L, Roy D, et al. (2018) The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens Environ 217: 72–85. https://doi.org/10.1016/j.rse.2018.08.005

    Article  Google Scholar 

  31. Guo F, Su Z, Wang G, et al. (2017) Understanding Fire Drivers and Relative Impacts in Different Chinese Forest Ecosystems. Sci Total Environ 605–606: 411–25. https://doi.org/10.1016/j.scitotenv.2017.06.219

    Article  Google Scholar 

  32. Hantson S, Scheffer M, Pueyo S, et al. (2017) Rare, Intense, Big Fires Dominate the Global Tropics under Drier Conditions. Sci Rep 7(1): 14374. https://doi.org/10.1038/s41598-017-14654-9

    Article  Google Scholar 

  33. Hijmans RJ, van Etten J, Mattiuzzi M, et al. (2020) Raster: Geographic Data Analysis and Modeling. R Package Version 3.4–5.

  34. Hofstede R (2001) The impact of human activities on the páramo. Quito. p-161–182. In: The paramos of Ecuador, peculiarities, problems and perspectives. Abya-Yala Press. Proyecto Páramo. Quito, Ecuador. p 310. (In Spanish)

    Google Scholar 

  35. Horn SP, Kappelle M (2009) Fire in the Páramo Ecosystems of Central and South America. In Tropical Fire Ecology, Berlin, Heidelberg: Springer Berlin, Heidelberg, Germany, pp 505–539.

    Chapter  Google Scholar 

  36. Jaafari A, Gholami DM, Zenner EK (2017) A Bayesian Modeling of Wildfire Probability in the Zagros Mountains, Iran. Ecol Inf 39: 32–44. https://doi.org/10.1016/j.ecoinf.2017.03.003

    Article  Google Scholar 

  37. Justice CO, Giglio L, Korontzia S, et al. (2002) The MODIS Fire Products. Remote Sens Environ 83(1–2): 244–62. https://doi.org/10.1016/S0034-4257(02)00076-7

    Article  Google Scholar 

  38. Kauffman BJ, Cummings DL, Ward DE (1998) Fire in the Brazilian Amazon 2. Biomass, nutrient pools and losses in cattle pastures. Oecologia, 113(3), 415–427. https://doi.org/10.1007/s004420050394

    Article  Google Scholar 

  39. Kassambara AA (2018) ggplot2: Based Publication Ready Plots. R package version 0.2.0.

  40. Keating PL (2007) Fire Ecology and Conservation in the High Tropical Andes: Observations Rom Northern Ecuador. J Lat Am Geogr 6(1): 43–62. http://www.jstor.org/stable/25765157

    Article  Google Scholar 

  41. Keating PL (1997) Mapping Vegetation and Anthropogenic Disturbances in Southern Ecuador with Remote Sensing Techniques: Implications for Park Management on JSTOR. Conference of Latin Americanist Geographers 23: 77–90. http://www.jstor.org/stable/25765845

    Google Scholar 

  42. Kohavi R (1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. IJCAI’95 Proceedings of the 14th international join conference on Artificial Intelligence. Vol 2. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, pp 1137–1143

    Google Scholar 

  43. Kuhn M, Wickham H (2019) Recipes: Preprocessing Tools to Create Design Matrices. R package Version 0.1.6.

  44. Kuhn M, Wing J, Weston S, et al. (2019) Caret: Classification and Regression Training. R Package Version 6.0-84.

  45. Kursa MB, Jankowski A, Rudnicki WR (2010) Boruta — A System for Feature Selection. Fundamenta Informaticae 101(4): 271–85. https://doi.org/10.3233/FI-2010-288

    Article  Google Scholar 

  46. Kursa MB, Rudnicki WR (2010) Feature Selection with the Boruta Package. J Stat Softw 36. https://doi.org/10.18637/jss.v036.i11

  47. Lesnoff M, Lancelot R (2019) Aod: Analysis of Overdispersed Data. R Package Version 1.3.1.

  48. Liousse C, Andreae MO, Artaxo P, et al. (2004) Deriving Global Quantitative Estimates for Spatial and Temporal Distributions of Biomass Burning Emissions. In Emissions of Atmospheric Trace Compounds, ed. C.E. Reeves In C. Granier, P. Artaxo. Dordrecht: Springer, Dordrecht, pp 71–113.

    Chapter  Google Scholar 

  49. Luteyn, JL, Churchill SP, Griffin D, et al. (1999) Paramos: a checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden, vol. 84. New York: New York: Botanical Garden Press. New York, USA. p 278.

    Google Scholar 

  50. Maingi JK, Henry MC (2007) Factors Influencing Wildfire Occurrence and Distribution in Eastern Kentucky, USA. Int J Wildland Fire 16: 23–33. https://doi.org/10.1071/WF06007

    Article  Google Scholar 

  51. Martell DL, Otukol S, Stocks BJ (2008) A Logistic Model for Predicting Daily People-Caused Forest Fire Occurrence in Ontario. Can J For Res 17(5): 394–401. https://doi.org/10.1139/x87-068

    Article  Google Scholar 

  52. Mataveli GAV, Silva ME, Pereira G, et al. (2018) Satellite Observations for Describing Fire Patterns and Climate-Related Fire Drivers in the Brazilian Savannas. Nat Hazards Earth Syst Sci 18(1): 125–44. https://doi.org/10.5194/nhess-18-125-2018

    Article  Google Scholar 

  53. McCullagh P, Nelder JA (2019) Routledge Generalized Linear Models. ed. Routledge New: Routledge. Boca Raton, USA. p 532.

  54. McWethy DB, Pauchard A, García R, et al. (2018) Landscape Drivers of Recent Fire Activity (2001–2017) in South-Central Chile. PLOS ONE 13(8). https://doi.org/10.1371/journal.pone.0201195

  55. Merino-De-Miguel S, González-Alonso F, Huesca M, et al. (2011) MODIS Reflectance and Active Fire Data for Burn Mapping in Colombia. Earth Interact 15(10): 1–17. https://doi.org/10.1175/2010EI344.1

    Article  Google Scholar 

  56. Messina JP, Cochrane MA (2007) The Forests Are Bleeding: How Land Use Change Is Creating a New Fire Regime in the Ecuadorian Amazon. J Lat Am Geogr, 6(1), 85–100. https://doi.org/10.1353/lag.2007.0007

    Article  Google Scholar 

  57. Miranda BR, Sturtevant BR, Stewart SL, et al. (2012) Spatial and Temporal Drivers of Wildfire Occurrence in the Context of Rural Development in Northern Wisconsin, USA. Int J Wildland Fire 21(2): 141. https://doi.org/10.1071/WF10133

    Article  Google Scholar 

  58. Mouillot F, Schultz M, Yue C, et al. (2014) Ten Years of Global Burned Area Products from Spaceborne Remote Sensing—A Review: Analysis of User Needs and Recommendations for Future Developments. Int J Appl Earth Obs Geoinf 26: 64–79. https://doi.org/10.1016/j.jag.2013.05.014

    Article  Google Scholar 

  59. Mundo IA, Wiegand T, Kanagaraj R, et al. (2013) Environmental Drivers and Spatial Dependency in Wildfire Ignition Patterns of Northwestern Patagonia. J Environ Manage 123: 77–87. https://doi.org/10.1016/j.jenvman.2013.03.011

    Article  Google Scholar 

  60. Oliveira S, Oehler F, San-Miguel-Ayanz J, et al. (2012) Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest. For Ecol Manage 275: 117–29. https://doi.org/10.1016/j.foreco.2012.03.003

    Article  Google Scholar 

  61. Oliveira S, Pereira J, San-Miguel-Ayanz J, et al. (2014) Exploring the Spatial Patterns of Fire Density in Southern Europe Using Geographically Weighted Regression. Appl Geogr 51: 143–57. https://doi.org/10.1016/j.apgeog.2014.04.002

    Article  Google Scholar 

  62. Ospina E (2017) Mapping burned areas in Ecuador using NASA satellite information, period 2000–2016. Quito, 2017. Undergraduate Thesis, Escuela Politécnica Nacional, Quito, Ecuador. p 95. (In Spanish)

    Google Scholar 

  63. Padilla M, Stehman SV, Ramo R, et al. (2015) Comparing the Accuracies of Remote Sensing Global Burned Area Products Using Stratified Random Sampling and Estimation. Remote Sens Environ 160: 114–21. https://doi.org/10.1016/j.rse.2015.01.005

    Article  Google Scholar 

  64. Pausas JG, Keeley JE (2019) Wildfires as an Ecosystem Service. Front Ecol Environ 17(5): 289–95. https://onlinelibrary.wiley.com/doi/abs/10.1002/fee.2044

    Article  Google Scholar 

  65. Pazmiño D (2019) Forest fire hazards associated with climatic factors in Ecuador. FIGEMPA: Research and Development 1(1): 10–18. https://doi.org/10.29166/revfig.v1i1.1800 (In Spanish)

    Google Scholar 

  66. Pereira MG, Trigo RM, da Camara CC, et al. (2005) Synoptic Patterns Associated with Large Summer Forest Fires in Portugal. Agric For Meteorol 129(1–2): 11–25. https://doi.org/10.1016/j.agrformet.2004.12.007

    Article  Google Scholar 

  67. Pérez-Cabello F, de la Riva Fernández J (1998) The use of Landsat TM images for the detection and cartography of burned areas in the western Huesca Pre-Pyrenees. Geographicalia 36: 131–46. (In Spanish) https://doi.org/10.26754/ojs_geoph/geoph.1998361684

    Google Scholar 

  68. R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org.

    Google Scholar 

  69. Ramsay PM (2014) Giant Rosette Plant Morphology as an Indicator of Recent Fire History in Andean Páramo Grasslands. Ecol Indic 45: 37–44. https://doi.org/10.1016/j.ecolind.2014.03.003

    Article  Google Scholar 

  70. Ripley B, Venables B, Bates DHK, et al. (2020) MASS: Support Functions and Datasets for Venables and Ripley’s MASS. R package version 7.3–53.

  71. Robin X, Turck N, Hainard A, et al. (2011) PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinformatics 12(1): 77. https://doi.org/10.1186/1471-2105-12-77

    Article  Google Scholar 

  72. Rodas M (2015) Analysis of the behavior of wildfires in the Paute River basin using remote sensors. Undergraduate Thesis, Universidad de Cuenca, Cuenca, Ecuador. p 66. (In Spanish)

    Google Scholar 

  73. Rodrigues M, De la Riva J (2014) An Insight into Machine-Learning Algorithms to Model Human-Caused Wildfire Occurrence. Environ Modell Software 57: 192–201. https://doi.org/10.1016/j.envsoft.2014.03.003

    Article  Google Scholar 

  74. Román-Cuesta R, Carmona-Moreno C, Lizcano G, et al. (2014) Synchronous Fire Activity in the Tropical High Andes: An Indication of Regional Climate Forcing. Global Change Biol 20(6): 1929–42. https://doi.org/10.1111/gcb.12538

    Article  Google Scholar 

  75. Roy DP, Frost PGH, Justice CO, et al. (2005) The Southern Africa Fire Network (SAFNet) Regional Burned — area Product — validation Protocol. Int J Remote Sens 26(19): 4265–92. https://doi.org/10.1080/01431160500113096

    Article  Google Scholar 

  76. Roy D, Boschetti L (2009) Southern Africa Validation of the MODIS, L3JRC, and GlobCarbon Burned-Area Products. IEEE Trans Geosci Remote Sens 47(4): 1032–44. https://doi.org/10.1109/TGRS.2008.2009000

    Article  Google Scholar 

  77. Sachs MC. (2017) plotROC: A Tool for Plotting ROC Curves. J Stat Softw 79(1): 1–19. https://doi.org/10.18637/jss.v079.c02

    Google Scholar 

  78. Sarmiento FO (1995) Restoration of equatorial Andes: the challenge for conservation of Trop-Andean landscape in Ecuador. In: Churchill SP et al. (eds.), Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium, The New York Botanical Garden, New York, USA. pp 637–651.

    Google Scholar 

  79. Sarmiento FO (2002) Anthropogenic Change in the Landscapes of Highland Ecuador. Geogr Rev 92(2): 213–34. https://doi.org/10.2307/4140971

    Article  Google Scholar 

  80. Sarmiento FO, Frolich LM (2002) Andean Cloud Forest Tree Lines. Mt Res Dev 22(3): 278–87. https://doi.org/10.1659/0276-4741(2002)022[0278:ACFTL]2.0.CO;2

    Article  Google Scholar 

  81. Sarmiento FO, Ibarra JT, Barreau A, et al. (2017) Applied Montology Using Critical Biogeography in the Andes. Ann Am Assoc Geogr 107(2): 416–28. https://doi.org/10.1080/24694452.2016.1260438

    Google Scholar 

  82. Sarmiento FO, Kooperman GJ (2019) A Socio-Hydrological Perspective on Recent and Future Precipitation Changes Over Tropical Montane Cloud Forests in the Andes. Front Earth Sci 7: 324. https://doi.org/10.3389/feart.2019.00324

    Article  Google Scholar 

  83. Sarmiento FO (2020) Montology manifesto: echoes towards a transdiciplinary science of mountains. J Mountain Sci 17: 2512–2527. https://doi.org/10.1007/s11629-019-5536-2

    Article  Google Scholar 

  84. Suárez E, Medina G (2001) Vegetation Structure and Soil Properties in Ecuadorian Paramo Grasslands with Different Histories of Burning and Grazing. Arct Antarct Alp Res 33(2): 164. https://doi.org/10.1080/15230430.2001.12003418

    Google Scholar 

  85. Suárez L, Silva P (1996) Ecuador. In Conservation Atlas of Tropical Forests: The Americas, ed. C Harcourt, C Sayer, J Billington. New York, USA. pp 260–69.

  86. Shlisky A, Alencar A, Manta M, et al. (2009) Overview: Global fire regime conditions, threats, and opportunities for fire regime management in the tropics. In Cochrane MA (ed.), In Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics (pp. 65–83). Springer. https://doi.org/10.1007/978-3-540-77381-8_1

  87. Uhl C, Kauffman BJ (1990). Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology, 71(2), 437–449. https://doi.org/10.2307/1940299

    Article  Google Scholar 

  88. Vargas-Rodríguez JJ (2017) Wildfires in Quito: human action or nature action? Undergraduate Thesis. Universidad Politécnica Salesiana, Quito, Ecuador. p 45. (In Spanish)

    Google Scholar 

  89. Vega-Garcia C, Woodard P, Titus S, et al. (1995) A Logit Model for Predicting the Daily Occurrence of Human Caused Forest Fires. Int J Wildland Fire 5(2): 101–11. https://doi.org/10.1071/WF9950101

    Article  Google Scholar 

  90. Vilar L, Nieto H, Martín MP (2010) Integration of Lightning- and Human-Caused Wildfire Occurrence Models. Hum Ecol Risk Assess 16(2): 340–64. https://doi.org/10.1080/10807031003670469

    Article  Google Scholar 

  91. Vilar L, Gómez I, Martínez-Vega J, et al. (2016) Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLOS ONE 11(8): 1–17. https://doi.org/10.1371/journal.pone.0161344

    Article  Google Scholar 

  92. Wan Z, Hook S, Hulley G (2015) NASA EOSDIS Land Processes DAAC MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document. https://doi.org/10.5067/MODIS/MOD11B3.006

  93. White S (2013) Grass Páramo as Hunter-Gatherer Landscape. Holocene 23(6): 898–915. https://doi.org/10.1177/0959683612471987

    Article  Google Scholar 

  94. Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis (Use R!) (2nd ed.), Springer. Houston, Texas, USA. pp 155.

    Book  Google Scholar 

  95. Wickham H, Hester J, Francois R, et al. (2017) Readr: Read Rectangular Text Data. R package version 1.4.0.

  96. Yang J, He H, Shifley S, et al. (2007) Spatial Patterns of Modern Period Human-Caused Fire Occurrence in the Missouri Ozark Highlands. For Sci 53(1): 1–15. https://doi.org/10.1093/FORESTSCIENCE/53.1.1

    Google Scholar 

  97. Ye J, Wu M, Deng Z, et al. (2017) Modeling the Spatial Patterns of Human Wildfire Ignition in Yunnan Province, China. Appl Geogr 89: 150–62. https://doi.org/10.1016/j.apgeog.2017.09.012

    Article  Google Scholar 

  98. Zomer MA, Ramsay PM (2020) The Impact of Fire Intensity on Plant Growth Forms in High-Altitude Andean Grassland. bioRxiv: 2020.04.25.061051. https://doi.org/10.1101/2020.04.25.06105

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Escuela Politécnica Nacional (National Polytechnic School) for the development of the project PIJ 17-05: “Los patrones climáticos globales y su influencia en la respuesta temporal y espacial de índices espectrales de la vegetación del páramo en el Ecuador” (Global climate patterns and their influence on temporal and spatial responses of the Ecuadorian paramo vegetation’s spectral indices).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xavier Zapata-Ríos.

Additional information

Authors’ Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analyses were performed by C. Lopez-Fabara, X. Zapata-Rios, A. Navarrete, S. Torres, and M. Flores. The first manuscript draft was written by X. Zapata-Rios and C. Lopez-Fabara. Manuscript revisions were completed by X. Zapata-Ríos. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zapata-Ríos, X., Lopez-Fabara, C., Navarrete, A. et al. Spatiotemporal patterns of burned areas, fire drivers, and fire probability across the equatorial Andes. J. Mt. Sci. 18, 952–972 (2021). https://doi.org/10.1007/s11629-020-6402-y

Download citation

Keywords

  • MODIS
  • MCD64A1
  • Spectral vegetation indices
  • Pre-fire season NDVI and precipitation
  • Remote sensing